# GEOTECHNICAL INVESTIGATION FY2012 LIFT STATION RENEWAL AND REPLACEMENT NORTHBROOK, HARDY TEMP HUNTERWOOD AND HARVEST MOON WBS NO. R-000267-0111-3 HOUSTON, TEXAS

GEI REPORT NO. 1140194901

Reported to:

ARCADIS U.S., INC.

Houston, Texas

Submitted by:

GEOTEST ENGINEERING, INC.

Houston, Texas

February 7, 2014

Key Map Nos. 488 M, 453 D, 456 K & 570 R



### GEOTEST ENGINEERING, INC.

Geotechnical Engineers & Materials Testing

5600 Bintliff Drive

Houston, Texas 77036

Telephone: (713) 266-0588

Fax: (713) 266-2977

**Report No. 1140194901** February 7, 2014

Mr. Edward Quiroz, P.E. ARCADIS, U.S., Inc. 2929 Briarpark Drive, Suite 300 Houston, Texas 77042

Reference:

**Geotechnical Investigation** 

FY2012 Lift Station Renewal and Replacement Northbrook Lift Station, Hardy Temp Lift Station, Hunterwood Lift Station and Harvest Moon Lift Station

WBS No. R-000267-0111-3

Houston, Texas

Dear Mr. Quiroz:

Presented herein is the final geotechnical investigation report for the referenced project. A draft report was submitted to you on September 6, 2013. This report supersedes all previously submitted reports, transmittals, etc. for the referenced project. This study was authorized by ARCADIS U.S., Inc. by Work Authorization No. 05142013-01 dated May 15, 2013 and 06202013-01 dated June 26, 2013.

We appreciate this opportunity to be of service to you. Please call us when we can be of further assistance.

Sincerely,

GEOTEST ENGINEERING, INC

TBPE Registration No.: F-410

Naresh Kolli, P.E.

Assistant Project Manager

6 Darest

Kuo-Chiang "Frank" Lin, P.E

Vice President

MB\ego

Copies Submitted: (2 + 1-pdf) PC38\Geotechnical\40194901F.DOC

#### TABLE OF CONTENTS

|     |                              |                                                  | <u>Page</u> |  |  |
|-----|------------------------------|--------------------------------------------------|-------------|--|--|
| SUM | MARY                         | <i>C</i>                                         | 1           |  |  |
| 1.0 | INTRODUCTION                 |                                                  |             |  |  |
|     | 1.1                          | Project Description                              | 3           |  |  |
|     | 1.2                          | Geotechnical Investigation Program               | 4           |  |  |
| 2.0 | FIEI                         | LD INVESTIGATION                                 |             |  |  |
|     | 2.1                          | General                                          | 5           |  |  |
|     | 2.2                          | Geotechnical Borings                             | 5           |  |  |
|     | 2.3                          | Piezometer Installation                          | 6           |  |  |
| 3.0 | LAB                          | LABORATORY TESTING                               |             |  |  |
| 4.0 | SITE                         | E CHARACTERIZATION                               |             |  |  |
|     | 4.1                          | Site Geology                                     | 8           |  |  |
|     | 4.2                          | General Fault Information                        | 8           |  |  |
|     | 4.3                          | Existing Paving                                  | 9           |  |  |
|     | 4.4                          | Soil Stratigraphy                                | 10          |  |  |
|     | 4.5                          | Water Levels                                     | 12          |  |  |
|     | 4.6                          | Environmental Concerns                           | 13          |  |  |
| 5.0 | GEOTECHNICAL RECOMMENDATIONS |                                                  |             |  |  |
|     | 5.1                          | General                                          | 14          |  |  |
|     | 5.2                          | Open-Cut Excavation                              | 15          |  |  |
|     |                              | 5.2.1 Geotechnical Parameters                    | 15          |  |  |
|     |                              | 5.2.2 Excavation Stability                       | 15          |  |  |
|     |                              | 5.2.3 Groundwater Control                        | 17          |  |  |
|     |                              | 5.2.4 Live Loads on Pipe Due to Traffic          | 18          |  |  |
|     |                              | 5.2.5 Auger Pit Backfill                         | 18          |  |  |
|     | 5.3                          | Trenchless Installation                          | 18          |  |  |
|     |                              | 5.3.1 Geotechnical Parameters                    | 18          |  |  |
|     |                              | 5.3.2 Earth Pressure on Pipe and Casing Augering | 18          |  |  |

## **TABLE OF CONTENTS** (Continued)

|        |          |                                                    | <u>Page</u>   |
|--------|----------|----------------------------------------------------|---------------|
|        |          | 5.3.3 Carrier Pipe Design Parameters               | 18            |
|        |          | 5.3.4 Influence of Augering on Adjacent Structures | 19            |
|        | 5.4      | Structures                                         | 20            |
|        |          | 5.4.1 Description                                  | 20            |
|        |          | 5.4.2 Foundation Conditions                        | 21            |
|        |          | 5.4.3 Foundation Design Recommendations            | 21            |
|        |          | 5.4.4 Protection of Below Grade Structures         | 24            |
|        |          | 5.4.5 Groundwater Control During Construction      | 24            |
|        |          | 5.4.6 Structure Backfill                           | 24            |
| 6.0    | CON      | NSTRUCTION CONSIDERATIONS                          | 25            |
| 7.0    | PRC      | OVISIONS                                           | 26            |
|        |          | ILLUSTRATIONS                                      |               |
|        |          |                                                    | <u>Figure</u> |
| Vicin  | ity Ma   | p                                                  | 1             |
| Plan o | of Bori  | ings2                                              | .1 thru 2.6   |
| Borin  | g Log    | Profiles                                           | .1 thru 3.5   |
| Symb   | ols and  | d Terms Used on Boring Log Profiles                | 4             |
| Excav  | ation    | Support Earth Pressure5                            | .1 thru 5.3   |
| Stabil | ity of   | Bottom for Braced Cut                              | 6             |
| Vertic | eal Stre | ess on Pipe Due to Traffic Loads                   | 7             |
| Earth  | Pressu   | are on Pipe Casing Augering                        | 8             |
| Latera | al Earti | h Pressure Diagram for Permanent Wall9             | .1 thru 9.3   |
| Uplift | Press    | ure and Resistance                                 | 10            |

#### **TABLES**

|                                                                | <u>Table</u>    |
|----------------------------------------------------------------|-----------------|
| Summary of Boring Information                                  | . 1             |
| Geotechnical Design Parameter Summary: Open-cut Excavation     | . 2             |
| Geotechnical Design Parameter Summary: Trenchless Installation | .3.1 and 3.2    |
| APPENDIX A                                                     |                 |
|                                                                | <u>Figure</u>   |
| Log of Borings from This Study                                 | .A-1 thru A-12  |
| Symbols and Terms Used on Boring Logs                          | . A-13          |
| Piezometer Installation Details                                | .A-14 and A-15  |
| APPENDIX B                                                     |                 |
|                                                                | <u>Figure</u>   |
| Summary of Laboratory Test Results                             | B-1 thru B-12   |
| Grain Size Distribution Curves                                 | .B-13 thru B-16 |

#### APPENDIX C

Piezometer Abandonment Reports

#### **SUMMARY**

A geotechnical investigation was conducted in connection with the design and construction of FY 2012 Lift Station Renewal and Replacement project in Houston, Texas. The FY 2012 Lift Station Renewal and Replacement project includes Northbrook Lift Station, Hardy Temp Lift Station, Hunterwood Lift Station and Harvest Moon Lift Station. The detailed project descriptions at each lift station location are presented in Section 1.1 of this report.

The scope of this study included drilling and sampling a total of twelve (12) borings to depths ranging from 15 to 70 feet at various lift station sites, converting two (2) of the borings into piezometers (at Harvest Moon Lift Station site), performing laboratory tests on samples recovered from the borings, reviewing available fault information, performing engineering analyses to develop geotechnical recommendations for FY 2012 renewal and replacement project and preparing a geotechnical report.

The principal findings and conclusions developed from this investigation are summarized as follows:

- Based on review of available fault information, no documented fault was found within the project areas of Northbrook Lift Station, Hardy Temp Lift Station, Hunterwood Lift Station Areas. In Harvest Moon Lift Station area, the Long Point Fault was found to cross the project alignment at Harvest Moon Lane. Hence, a Phase I Geological Fault Study is recommended for the Harvest Moon Lift Station project area. However, it is our understanding that fault studies on Long Point Fault have been performed (by others) for other City of Houston Projects in the general vicinity of Harvest Moon Lift Station area and reports of these studies were made available to the engineer of the record by the City of Houston.
- The existing pavement sections as revealed by the cores/borings drilled through the
  existing paving consists of 3 inches of asphalt over 6 inches of sand and shell in
  Northbrook Lift Station, 6 inches of concrete over 6 inches of stabilized sand and shell in

Report No. 1140194901 February 7, 2014

Geotest Engineering, Inc. FY2012 Lift Station Renewal And Replacement Northbrook, Hardy Temp, Hunterwood and Harvest Moon WBS No. R-000267-0111-3, Houston, Texas

Hunterwood Lift Station. In the Harvest Moon Lift Station area, the existing paving consists of 5.5 to 8 inches of concrete over 0 to 8.5 inches of base material. The base consists of lime stabilized sand and shell and brown sand.

- The subsurface soils below the pavement or existing grade generally consist of cohesive soils, cohesive soils over cohesionless soils, or cohesive soils over intermittent cohesionless soils and cohesive soils within the explored boring depths. The cohesive soils consist of medium stiff to hard dark gray, gray, brown, yellowish brown and reddish brown Fat Clay, Fat Clay with sand, Lean Clay, Lean Clay with sand Sandy Lean Clay. The cohesionless soils consists of loose to very dense reddish brown Silty Sand, Sandy Silt, Silt, Fine Sand with silt and Fine Sand. Surficial fill material consisting of medium stiff to hard dark gray, gray and brown Fat Clay, Sandy Lean Clay, sand with gravel was encountered in borings NBB-1, HTB-1 and HMB-6 below the grade to depths ranging from 4 feet to 15 feet. The detailed description of soils is presented in Section 4.4 of this report.
- The groundwater level measured in all the borings was at depths ranging from 8 to 24 feet during drilling. The groundwater level measured at 24 hours and 30 day after completion of the drilling in Piezometers HMB-1P and HMB-7P ranged from 16 feet to 18.4 feet.
- All excavation operations should be carried out in accordance with OSHA Standards and the City of Houston Standards.
- In general, excavation and backfill for utilities should be designed and constructed in accordance with City of Houston Standard Specification No. 02317. The bedding for sanitary sewer should be in accordance with City of Houston Drawing No. 02317-03.
- The auger pits should be constructed and backfilled per the City of Houston Standard Specifications, Section 02447, "Augering Pipe and Conduit."
- The developed (net) allowable bearing pressures for various structures are presented in Section 5.4 of this report.

#### 1.0 INTRODUCTION

#### 1.1 Project Description

A geotechnical investigation was conducted in connection with the design and construction of FY 2012 Lift Station Renewal and Replacement project in Houston, Texas. The FY 2012 Lift Station Renewal and Replacement project includes the improvements of Northbrook Lift Station, Hardy Temp Lift Station, Hunterwood Lift Station and Harvest Moon Lift Station. The project details are given below:

- <u>Northbrook Lift Station</u>: The improvements include design and construction of a new force main bypass manhole (approximately 10-foot deep) and rehabilitation of an electrical pad.
- <u>Hardy Temp Lift Station</u>: The improvements include design and construction of a new 8inch gravity sewer connecting from the existing Hardy Temp Lift Station to an existing
  manholes located across Hardy Toll Road. The gravity sewer will be installed by auger
  method.
- <u>Hunterwood Lift Station</u>: The improvements include rehabilitation works such as remove and replace pumps and construction of two (2) new bypass manholes (approximately 12 feet and 20-foot deep). The improvements also include removing center wall of the existing wet well and making a larger wet well.
- Harvest Moon Lift Station: The improvements include design and construction of a new wet well approximately 25 feet in diameter and about 48 feet in depth. The project also includes a 30-inch force main (approximately 12 to 28-foot deep) and a gravity sewer (depths ranging from 23 to 28 feet) approximately 3,800 linear feet connecting from Dairy Ashford Lift Station to Harvest Moon Lift Station. The proposed gravity sewer will be constructed by open cut method and proposed force main will be installed by trenchless method.

A project Vicinity Map is shown on Figure 1.

#### 1.2 Geotechnical Investigation Program

The purposes of this study are to evaluate the soil and ground water conditions at each project area and to provide geotechnical recommendations for the proposed improvements at the lift station sites. The scope of this investigation consisted of the following tasks.

- Cored the existing pavement for boring access.
- Drilled and sampled Twelve (12) borings to depths ranging from 15 to 70 feet.
- Converted two (2) borings into a piezometer to monitor the steady groundwater level.
- Performed laboratory tests in accordance with ASTM methods on selected representative soil samples to determine the engineering properties of the soils and to select design soil parameters.
- Performed a review of available fault information to determine the existence of known active faults that may impact this project.
- Performed engineering analyses in accordance with the current City of Houston Infrastructure
   Design Manual, July 1, 2012 to develop geotechnical recommendations for the design and construction of the proposed improvements at the lift stations.
- Prepared a geotechnical engineering report.
- Prepared a separate soil type report for open excavation.

#### 2.0 FIELD INVESTIGATION

#### 2.1 General

After obtaining the utilities clearance of proposed twelve (12) marked borings in the field, existing concrete pavement was cored at nine (9) boring locations for boring access and borings were drilled to the explored depths utilizing a truck mounted drilling rig. Traffic control devices and personnel were utilized during coring and drilling to maintain safety of drill crew and people driving in the streets. All the drilling and sampling were performed in accordance with appropriate ASTM procedures. It should be noted that at Harvest Moon Lift Station, the design depths for sanitary gravity sewer and force main, as shown on the 60% submittal drawings, are deeper than the original proposed depths during our proposal stage. The original proposed boring depths at boring locations HMB-2 through HMB-8, do not meet the City of Houston criteria, hence, deepening of borings HMB-2 through HMB-8 will be required.

#### 2.2 Geotechnical Borings

Subsurface conditions were explored by drilling a total of twelve (12) borings (NBB-1, HTB-1, HTB-2, HWB-1 and HMB-1 through HMB-8) to depths ranging from 15 to 70 feet. The boring locations are presented on Figures 2.1 through 2.4. The survey information (Northing and Easting coordinates and ground surface elevation) of the completed borings were provided to us by ARCADIS. A summary of field exploration is provided on Table 1.

Samples were taken continuously to the terminal depths in all lift station borings and borings which are shallower than 20 feet. Samples were taken continuously to a depth of 20 feet and at 5-foot intervals thereafter in all the other borings. In general, samples of cohesive soils were obtained with a 3-inch thin-walled tube sampler in accordance with ASTM Method D1587 and samples of cohesionless soils were sampled with a 2-inch split-barrel sampler in accordance with ASTM Method D1586. Each sample was removed from the sampler in the field, carefully examined, and

then logged by an experienced soils technician. Suitable portions of each sample were sealed and packaged for transportation to Geotest's laboratory. The shear strength of cohesive soil samples was estimated using a pocket penetrometer in the field. The driving resistances for the split-barrel sampler in cohesionless soils, recorded in the field as "blows per foot," are indicated on the boring logs. Borings HMB-1 and HMB-7 were converted each to a piezometer and the rest of the borings were grouted with cement bentonite grout after completion of water level measurements.

Detailed descriptions of the soils encountered in the borings are given on the boring logs NBB-1, HTB-1, HTB-2, HWB-1 and HMB-1 through HMB-8 presented on Figures A-1 through A-12 in Appendix A. A key to "Symbols and Terms used on Boring Logs" is given on Figure A-13 in Appendix A. The depth at which groundwater was encountered during drilling is also noted on the boring logs.

#### 2.3 Piezometer Installation

During the field investigation, two (2) piezometers were installed in the open boreholes of borings HMB-1 and HMB-7. The locations of the piezometers, designated as HMB-1P and HMB-7P, are shown on Plan of Borings Figures 2.1 through 2.6. The piezometer installation reports showing the construction of piezometers, including the water level readings at different dates, are provided on Figures A-14 and A-15 in Appendix A.

The piezometers were abandoned in place after taking final water level readings. The piezometer abandonment reports are presented in Appendix C.

#### 3.0 LABORATORY TESTING

The laboratory testing program was designed to evaluate the pertinent physical properties and shear strength characteristics of the subsurface soils. Classification tests were performed on selected samples to aid in soil classification. All tests were performed in accordance with appropriate ASTM Standards.

Undrained shear strengths of selected cohesive samples were measured by unconsolidated undrained triaxial compression tests (ASTM D2850). Results of the unconsolidated undrained triaxial compression tests are plotted as solid squares on the boring logs. The shear strength of cohesive samples was measured in the field with a calibrated pocket penetrometer and also in the laboratory with a Torvane. The shear strength values obtained from the penetrometer and Torvane are plotted on the boring logs as open circles and triangles, respectively.

Measurements of moisture content (ASTM D2216) and dry unit weight were taken for each unconsolidated undrained triaxial compression test sample. Moisture content measurements were also made on other samples to define the moisture profile at each boring location. Atterberg limits tests (ASTM D4318) were performed on selected cohesive soil samples. Sieve analyses (ASTM D422) and Percent Passing No. 200 Sieve (ASTM D1140) were also performed on selected cohesionless soil and cohesive soil samples to evaluate grain size distribution and physical classification.

The results of most of the laboratory tests are plotted or summarized on the boring logs. The summary of laboratory test results are also presented in a tabular form presented on Figures B-1 through B-12 in Appendix B. The grain size distribution curves are presented on Figure B-13 through B-16 in Appendix B.

7

#### 4.0 SITE CHARACTERIZATION

#### 4.1 Site Geology

Based on the Houston Sheet, Texas, Geologic Atlas of Texas (Bureau of Economic Geology, University of Texas, 1982) the location of the project alignment lies within the boundaries of the Beaumont Formation's surface exposure. The clays and sands of the Beaumont Formation are overconsolidated as a result of desiccation from frequent rising and lowering of the sea level and the ground water table. Consequently, clays of this formation have moderate to high shear strength and relatively low compressibility. The sands of the Beaumont Formation are typically very fine and often silty. There is evidence in the Houston area of the occurrence of cemented material (sandstone and siltstone) deposits within this formation.

#### 4.2 General Fault Information

A review of information in the Geotest library, relating to known surface and subsurface geologic faults in the general area of the project site, was undertaken. The information consists of U.S. Geological Survey maps, open file reports and information contained in our files relating to geologic faults in the project areas.

Based on the available information, presented below is the fault information for the project areas.

Northbrook Lift Station: No documented faults were noticed near this project area.

Hardy Temp Lift Station: No documented faults were noticed near this project area.

<u>Hunterwood Lift Station</u>: No documented faults were noticed near this project area.

Harvest Moon Lift Station Area: The Long Point Fault crosses the project alignment at Harvest Moon Lane. Hence, a Phase I Geological Fault Study is recommended for the Harvest Moon Lift Station project area. However, it is our understanding that fault studies on Long Point Fault have been

performed (by others) for other City of Houston Projects in the general vicinity of Harvest Moon Lift Station area and reports of these studies were made available to the engineer of the record by the City of Houston.

#### 4.3 Existing Paving

The existing pavement as revealed by boring NBB-1 drilled at Northbrook lift station consists of 3 inches of asphalt over 6 inches of sand and shell mix. The existing pavement as revealed by borings HWB-1 drilled at Hunterwood lift station consists of 6 inches of concrete over 6 inches of stabilized sand and shell base. The existing pavement as revealed by borings HMB-1 through HMB-8 drilled at Harvest Moon lift station area revealed 5.5 to 8 inches of concrete over 0 to 8.5 inches of shell and sand base. The borings HTB-1 and HTB-2 at Hardy Temp lift station were drilled in the grass area.

The details are given below:

|                      | Existing Pavement |                                              |                                               |               |                |  |  |
|----------------------|-------------------|----------------------------------------------|-----------------------------------------------|---------------|----------------|--|--|
| Lift Station<br>Site | Boring            | Asphalt<br>Pavement<br>Thickness<br>(inches) | Concrete<br>Pavement<br>Thickness<br>(inches) | Base (inches) | Total (inches) |  |  |
| Northbrook           | NBB-1             | 3.0                                          |                                               | 6.0           | 9.0            |  |  |
| Hunterwood           | HWB-1             |                                              | 6.0                                           | 6.0*          | 12.0           |  |  |
| Harvest              | HMB-1 (HMB-1P)    |                                              | 8.0                                           | 8.5           | 16.5           |  |  |
| Moon                 | HMB-2             |                                              | 5.5                                           |               | 5.5            |  |  |
|                      | HMB-3             |                                              | 7.0                                           | 2.0           | 9.0            |  |  |
|                      | HMB-4             |                                              | 6.0                                           | 2.0           | 8.0            |  |  |
|                      | HMB-5             |                                              | 6.0                                           | 2.0           | 8.0            |  |  |
|                      | HMB-6             |                                              | 7.5                                           |               | 7.5            |  |  |
|                      | HMB-7 (HMB-7P)    |                                              | 7.5                                           |               | 7.5            |  |  |
|                      | HMB-8             |                                              | 7.5                                           |               | 7.5            |  |  |

Note: \* Stabilized sand and shell base.

- 1) The unstabilized base includes shell, sand, gravel and clay mix.
- 2) Borings HTB-1 and HTB-2 were drilled in grass area.

#### 4.4 Soil Stratigraphy

Based on the subsurface soils encountered in borings drilled, five (5) boring log profiles were developed and are presented on Figure 3.1 through 3.5 The symbols and abbreviations used on boring log profile is given on Figure 4. To the left of each boring shown on the profile is an indication of the consistency or density of each stratum. More than one consistency for an individual stratum indicates that the consistency varies within the stratum. For cohesive soils, consistency is related to the undrained shear strength of the soil and for cohesionless soils, relative density of soil is measured by blow counts from Standard Penetration Tests. To the right of each boring shown on the profile is the overall classification of the soil contained within each stratum. The classification is based on the ASTM Designation D2487.

The subsurface conditions as revealed by borings drilled at each lift station area are given below:

Northbrook Lift Station (Boring NBB-1). The subsurface soils below the pavement, as revealed by boring NBB-1 and as shown on boring log profile presented on Figure 3.1, consist of fill material to the explored depth of 15 feet. The fill consists of medium stiff to hard fat clay with calcareous and ferrous nodules.

The fat clay fill is of high plasticity with a liquid limit of 56 and a plasticity index of 29. The fines content (percent passing No. 200 sieve) of fat clay is about 86 percent.

Hardy Temp Lift Station (HTB-1 and HTB-2) The subsurface soils below the existing grade, as revealed by borings HTB-1 and HTB-2 and as shown on boring log profile presented on Figure 3.2, consist of cohesive soils underlain by cohesionless soils in boring HTB-1 and cohesive soils with intermittent cohesionless soils in boring HTB-2 to the explored depths of 16 to 20 feet. The cohesive soils consist of medium stiff to very stiff brown, yellowish brown and reddish brown Lean Clay with sand and Sandy Lean Clay. The cohesionless soils consist of medium dense brown and gray Silty Sand.

Fill material consisting of medium stiff to stiff dark gray and gray yellowish brown sandy lean clay w/roots and gravel was encountered below the existing grade to a depth of 4 feet in boring HTB-1.

The sandy lean clay is of medium to high plasticity with liquid limits ranging from 30 to 37 and the plasticity indices ranging from 14 to 21. The fines content (percent passing No. 200 sieve) of Silty Sand ranges from 15 to 18 percent. The fines content of Sandy Lean Clay is about 59 percent.

<u>Hunterwood Lift Station (Boring HWB-1).</u> The subsurface soils below the pavement, as revealed by boring HWB-1 and as shown on boring log profile presented on Figure 3.3, consists of cohesive with intermittent cohesionless soils to the explored depth of 52 feet. The cohesive soils consist medium stiff to very stiff gray Fat Clay, Lean Clay w/sand and Sandy Lean Clay. The cohesionless soils consist of loose to dense brown, gray and brown Silty Sand and Fine Sand w/silt and Sand.

The Fat Clay is of high plasticity with a liquid limit of about 58 and a plasticity index of about 36 to 37. The Lean Clay with sand is of high plasticity with a liquid limit of about 40 and a plasticity index of about 23. The fines content (percent passing No. 200 sieve) of Sand and Fine Sand w/silt ranges from 2 to 10 percent, and the fines content of Silty Sand is about 17 percent. The fines content of Lean Clay with sand is about 74 percent. The fines content of Fat Clay ranges from 86 to 93 percent.

Harvest Moon Lift Station (Boring HMB-1 through HMB-8). The subsurface soils below the existing pavement, as shown on the boring logs HMB-1 through HMB-8 and as shown on boring log profiles presented on Figures 3.4 and 3.5, consist of cohesive soils with intermittent cohesionless soils to the explored depths of 30 to 70 feet. The cohesive soils consists of medium stiff to hard gray, brown and yellowish brown Fat Clay, Fat Clay with sand, Lean Clay with sand, Sandy Lean Clay and Silty Clay. The cohesionless soils consist of loose to very dense brown and gray Silty Sand, Clayey Sand, Silt, Silt with sand and Sandy Silt. It should be noted that loose silt encountered in boring HMB-4 between the depths of 23 and 28 feet is prone to disturbance and is considered to be unstable soil. Thus, extra precaution should be carried out by using appropriate construction equipments and

# methods to protect the ground and to minimize and prevent any disturbance during the installation of sewer line through this loose silt.

The Fat Clay is of high to very high plasticity with liquid limits ranging from 51 to 76 and plasticity indices ranging from 32 to 48. The Lean Clay with sand, Sandy Lean Clay and Silty Clay are of low to high plasticity with liquid limits ranging from 25 to 46 and plasticity indices ranging from 6 to 27. The fines content (percent passing No. 200 sieve) of Silty Sand ranges from 44 to 46 percent. The fines content of silt and silt with sand ranges from 73 to 91 percent. The fines content of sandy silt ranges from 53 to 69 percent. The fines content of Silty Clay, Lean Clay and Lean Clay w/sand ranges from 76 to 91 percent. The percent fines of Sandy Lean Clay ranges from 56 to 70 percent and the fines content of Fat Clay, Fat Clay with sand ranges from 81 to 100 percent.

#### 4.5 Water Levels

The groundwater level measurements were made in the open boreholes at the time of drilling in all the borings and 24 hours and 30 days water level measurements were made in Piezometers HMB-1P and HMB-7P. The details are given below.

|            |            | Range of Groundwater Depth (ft) |                                        |  |  |
|------------|------------|---------------------------------|----------------------------------------|--|--|
| Alignment  | Boring No. | During<br>Drilling              | 24hr or more Measured in<br>Piezometer |  |  |
| Northbrook | NBB-1      |                                 | N/A                                    |  |  |
| Hardy Temp | HTB-1      | 8.0-10                          | N/A                                    |  |  |
|            | HTB-2      | 8.9-12                          | N/A                                    |  |  |
| Hunterwood | HWB-1      | 19.4-24                         | N/A                                    |  |  |

|              |                | Range of Groundwater Depth (ft) |                                        |  |
|--------------|----------------|---------------------------------|----------------------------------------|--|
| Alignment    | Boring No.     | During<br>Drilling              | 24hr or more Measured in<br>Piezometer |  |
| Harvest Moon | HMB-1 (HMB-1P) | 20.6-32                         | 18.5(7-24-13)                          |  |
| Northbrook   | HMB-2          |                                 | N/A                                    |  |
|              | HMB-3          |                                 | N/A                                    |  |
|              | HMB-4          | 19.5-24                         | N/A                                    |  |
|              | HMB-5          | 18.5-24                         | N/A                                    |  |
|              | HMB-6          | 19.8-22                         | N/A                                    |  |
|              | HMB-7 (HMB-7P) | 17.0-20                         | 16.0 (7-2-13)                          |  |
|              | HMB-8          | 17.8-24                         | N/A                                    |  |

Note: \* In borings NBB-1, HMB-2 and HMB-3, no ground water was encountered during drilling.

It should be noted that various environmental and man-made factors such as amount of precipitation, could substantially influence groundwater level.

#### 4.6 Environmental Concerns

Based on the borings, no environmental concerns were noticed for the study.

#### 5.0 GEOTECHNICAL RECOMMENDATIONS

#### 5.1 General

A geotechnical investigation was conducted in connection with the design and construction of FY 2012 Lift Station Renewal and Replacement project in Houston, Texas. The FY 2012 Lift Station Renewal and Replacement project includes the improvements of Northbrook Lift Station, Hardy Temp Lift Station, Hunterwood Lift Station and Harvest Moon Lift Station. The project details are given below:

- <u>Northbrook Lift Station</u>: The improvements include design and construction of a new force main bypass manhole (approximately 10-foot deep) and rehabilitation of an electrical pad.
- <u>Hardy Temp Lift Station</u>: The improvements include design and construction of a new 8inch gravity sewer connecting from the existing Hardy Temp Lift Station to an existing
  manholes located across Hardy Toll Road. The gravity sewer will be installed by auger
  method.
- <u>Hunterwood Lift Station</u>: The improvements include rehabilitation works such as remove and replace pumps and construction of two (2) new bypass manholes (approximately 12 feet and 20-foot deep). The improvements also include removing center wall of the existing wet well and making a larger wet well.
- Harvest Moon Lift Station: The improvements include design and construction of a new wet well approximately 25 feet in diameter and about 48 feet in depth. The project also includes a 30-inch force main (approximately 12 to 28-foot deep) and gravity sewer (depths ranging from 23 to 28 feet) approximately 3,800 linear feet connecting from Dairy Ashford Lift Station to Harvest Moon Lift Station. The proposed gravity sewer constructed by open cut method and proposed force main will be installed by trenchless method.

#### 5.2 Open-Cut Excavation

<u>5.2.1</u> Geotechnical Parameters. Based on the soil conditions revealed by the borings, geotechnical parameters were developed for the design of the proposed lift stations and open cut excavation for gravity sewer and auger pits for gravity sewer and force main. The geotechnical design parameters are provided in Table 2. For design, the groundwater level should be assumed to exist at the ground surface, since this condition may exist after a heavy rain or flooding.

5.2.2 Excavation Stability. The open excavation for auger pits and open trench may be shored, laid back to a stable slope or some other equivalent means used to provide safety for workers and adjacent structures. The excavating and trenching operations should be in accordance with OSHA Standards, OSHA 2207, Subpart P, latest revision and the City of Houston requirements.

- <u>Excavation Shallower Than 5 Feet</u> Excavations that are less than 5 feet (critical height)
  deep should be appropriately protected when any indication of hazardous ground
  movement is anticipated.
- Excavation Deeper Than 5 Feet Excavations that are deeper than 5 feet should be sloped, shored, sheeted, braced or laid back to a stable slope or supported by some other equivalent means or protection such that workers are not exposed to moving ground or cave-ins. The slopes and shoring should be in accordance with the trench safety requirements per OSHA Standards.

In view of relatively weak soils (medium stiff fat clay and sandy lean clay) encountered between the depths of 12 and 26 feet in boring HWB-1, a soil retention system is recommended for Hunterwood Lift Station location. The retention system should remain in place until backfilling is within 5 feet of the ground surface. Based on the soil conditions and proposed excavation depth of about 20 feet for the wet well, the following alternatives can be considered for soil retention.

- 1. Temporary sheet piles
- 2. H-piles with wooden lagging

Sheet piles may be driven or vibrated in place. We understand that due to the proximity of the existing structures, such as existing lift station, driving/vibrating sheet piles will have some effect on existing structures and this option has to be reevaluated. It is our opinion that the H-piles with wooden lagging may be a feasible option for this project.

The following items provide design criteria for excavation stability.

- (i) OSHA's Soil Type. Based on the soil conditions revealed by the borings and the assumed groundwater level at surface, OSHA's soil type "C" should be used for the determination of allowable maximum slope and/or the design of a shoring system. For shoring deeper than 20 feet, an engineering evaluation is required.
- (ii) Excavation Support Earth Pressure. Based on the subsurface conditions indicated by this investigation and laboratory testing results, the excavation support earth pressure diagrams were developed and are presented on Figures 5.1 thru 5.3. These pressure diagrams can be used for the design of temporary excavation bracing. For a trench box, a lateral earth pressure resulting from an equivalent fluid with a unit weight of 94 pcf is recommended. The above value of equivalent fluid pressure is based upon an assumption that the groundwater level is near the ground surface, since these conditions may exist after a heavy rain or flooding. Effect of surcharge loads at the ground surface should be added to the computed lateral earth pressure. A surcharge load, q, will typically result in a lateral load equal to 0.5 q.

Report No. 1140194901 February 7, 2014

Geotest Engineering, Inc. FY2012 Lift Station Renewal And Replacement Northbrook, Hardy Temp, Hunterwood and Harvest Moon WBS No. R-000267-0111-3, Houston, Texas

If H piles with wooden lagging are planned at Hunterwood Lift Station, the piles should penetrate at least 10 feet below the bottom of excavation with a bracing at about 6 feet from the ground surface.

(iii) <u>Bottom Stability.</u> In braced cuts, if tight sheeting is terminated at the base of the cut, the bottom of the excavation can become unstable under certain conditions. This condition is governed by the shear strength of the soils and by the differential hydrostatic head between the groundwater level within the retained soils and the groundwater level at the interior of the trench excavation. For cuts in cohesive soils, as encountered for the anticipated excavation depths of about 10 to 28 feet, the stability of the bottom can be evaluated in accordance with the procedure outlined on Figure 6. However, at borings HTB-1, HTB-2, HMB-1, HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8 where cohesionless (such as silty sand, fine sand with silt, silt w/sand and silt) were encountered at the invert or within 3 feet from bottom of invert, dewatering will be required to prevent bottom blowup.

5.2.3 Groundwater Control. Excavations for the proposed sanitary sewer and force main may encounter groundwater seepage to varying degrees depending upon groundwater conditions at the time of construction and the location and depth of excavation. In cohesive soils, as encountered in the borings for the excavation depths of 10 to 28 feet, groundwater may be managed by collection in trench bottom sumps for pumped disposal. However, at borings HTB-1, HTB-2, HMB-1, HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8 where cohesionless (such as silty sand, fine sand with silt, silt w/sand and silt) were encountered at the invert or within 3 feet from bottom of invert, dewatering such as vacuum well points (for excavation depth up to 15 feet) and deep wells with submersible pumps (for excavation depth greater than 15 feet) may be required to lower the ground water level at least 5 feet below the bottom of excavation.

It is recommended that the groundwater conditions be verified at the time of construction and that groundwater control be performed in general accordance with City of Houston Standard Specifications, Section 01578.

<u>5.2.4 Live Loads on Pipe Due to Traffic.</u> Loads on pipe due to traffic should be considered. A graph providing calculated vertical stress on pipe due to traffic loads is given on Figure 7.

<u>5.2.5 Auger Pit Backfill</u>. The excavated auger pit should be backfilled per the City of Houston Standard Specification Section 02447, "Augering Pipe and Conduit," Subsection 3.04.

#### 5.3 Trenchless Installation

It is understood that the proposed gravity sewer at Hardy Temp lift station site and gravity sewer and 30-inch sanitary force main at Harvest Moon Lift station will be installed by auger method.

<u>5.3.1</u> Geotechnical Parameters. Based on the soil conditions revealed by soil borings, laboratory test data, geotechnical design parameters were developed for cohesive soils and cohesionless soils and are provided in Tables 3.1 and 3.2. The cohesive soils include fat clay, lean clay, lean clay w/sand and sandy lean clay. The cohesionless soils include silty sand, sandy silt, silt w/sand and silt. For design conditions, the groundwater levels should be assumed to exist at the ground surface.

<u>5.3.2 Earth Pressure on Pipe and Casing Augering</u>. The earth pressures on pipe and casing augering should be determined from Figure 8. Equations to calculate the auger casing loads are also shown on Figure 8.

<u>5.3.3 Carrier Pipe Design Parameters.</u> Carrier pipe must be sufficiently strong to withstand anticipated long-term ground loads and must not be subjected to deterioration by substance either in ground or in the auger casing. The carrier pipe design should include consideration of not only the loads applied to the pipe but also factors other than soil loading. These factors could include minimum structural code requirements, loading from pipe jacking operations and other construction loads. The

drained geotechnical design parameters given in Tables 3.1 and 3.2 should be used to analyze the soil structure intersection of the carrier pipe.

<u>5.3.4 Influence of Augering on Adjacent Structures.</u> Surface and near-surface structures near the pipe and casing augering consist primarily of city streets, street crossings, public and private utilities.

Ground movement, in terms of loss of ground or ground lost, is commonly associated with soft ground augering. If such ground movement is excessive, it may cause damage to the structures, roads and services located above the auger casing. While ground movement cannot be eliminated, it can be controlled within certain limits by the use of proper construction techniques and good quality workmanship. These include, but are not limited to, prevention of excessive ground loss during augering with the use of grouting and filling the annular space between the pipe or casing and the surrounding soil and prevention of undue loss of fines through dewatering.

The selection and execution of augering methods that are best suited to anticipated ground conditions along the proposed auger casing are, in fact, the contractor's primary contribution to successful completion of the proposed auger casing. On review of the boring logs, the ground conditions for augering (excavation face) will be primarily through fat clay, lean clay, and sandy lean clay layers, except at borings HTB-1, HTB-2, HMB-1, HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8 where excavation face will be in cohesive interface with cohesionless soils or in cohesionless soils. Most of the cohesive soils are medium stiff to very stiff in consistency and ground in these soils may be expected to behave as squeezing to ravelling ground near the invert. The cohesionless soils (silty sand, sandy silt and silt) are loose to medium dense and the ground at these locations may be expected to behave raveling to running ground near the invert depths. Hence, extra precautions will be required by using the appropriate techniques at these locations, especially near boring HMB-4 where loose silt was encountered between the depths of 23 feet and 28 feet, during the trenchless installation to prevent any

excessive ground loss due to the disturbance and removal of the cohesionless soils. Close monitoring of ground movement should be carried out during the trenchless installation.

The extra precautions may include:

- Shorten duration between auger excavation and pushing of casing/pipe as minimum as possible.
- Alternatively use steel pipe in these areas.
- If any excessive ground loss is observed during closed monitoring, grouting will be required to fill any voids.

At locations near borings HTB-1, HTB-2, HMB-1, HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8, the ground conditions for trenchless operation (excavation face) will be through cohesive soil interface with cohesionless soils or in cohesionless soils. In such conditions, dewatering will be necessary.

The proposed auger casing is parallel with or cross beneath utility lines. The largest potential problems from utilities may result from:

- Leaking water pipes
- Gas pipe breakage leading to a potential explosion
- Breakage of storm or sanitary sewers

In general, it is the contractor's responsibility to investigate these and other possible third party interactions along the proposed gravity sewer alignments and to accommodate all of these interactions with the use of good construction methods.

#### 5.4 Structures

<u>5.4.1 Description.</u> The structures associated with this project will be an electrical pad and manhole (approximately 10-foot deep) at Northbrook lift station, manholes (approximately 12 to 20-

foot deep) at Hunterwood lift station and manholes (approximately 23.5 to 28-foot deep) and new wet well (approximately 48-foot deep) at Harvest Moon lift station.

5.4.2 Foundation Conditions. Based on the soil conditions revealed by the borings, the mat foundation supporting the electrical pad and manhole at Northbrook lift station will be placed at 2 feet and 10 feet, will be in medium stiff to very stiff fat clay fill material. The mat foundation for supporting the manholes at Hunterwood lift station, placed at a depth of 12 to 20 feet, will be in medium stiff sandy lean clay. The foundation for supporting wet well at Harvest Moon lift station, placed at a depth of 48 feet, will be in hard fat clay and the manholes placed at a depths of 24 to 28 feet will be either in stiff to very stiff sandy lean clay and clay or medium dense silty sand.

<u>5.4.3 Foundation Design Recommendations.</u> The following items provide recommendations and design criteria for construction of the mat foundations for the electrical pad at Northbrook lift station and wet wells at Hunterwood and Harvest Moon lift stations and manholes at Harvest Moon Lift Station.

#### • Allowable Bearing Pressures

The allowable bearing pressures for the all the proposed structures are given below:

|                 |                           |         | Range of   | Net Allowable<br>Bearing |
|-----------------|---------------------------|---------|------------|--------------------------|
| Lift Station    | Structure Type            | Borings | Depth (ft) | Pressure (psf)           |
| Northbrook Lift | Electrical Pad            | NBB-1   | 2          | 1,670                    |
| Station         | Force Main Manhole        |         | 10         | 3,000                    |
| Hunterwood Lift | 6' Diameter Manhole       | HWB-1   | 12         | 1,500                    |
| Station         | 6' Diameter Manhole       |         | 20         | 1,500                    |
| Harvest Moon    | Wet Well                  | HMB-1   | 48         | 6,000                    |
| Lift Station    | Manhole No.1 (Sta. 2+80)  | HMB-8   | 23.5       | 2,500                    |
|                 | Manhole No.2 (Sta. 8+00)  | HMB-7   | 24.0       | 2,000                    |
|                 | Manhole No.3 (Sta. 12+20) | HMB-6   | 27-28      | 5,000                    |
|                 | Manhole No.4 (Sta. 14+25) |         |            |                          |
|                 | Manhole No.5 (Sta. 15+05) |         |            |                          |
|                 | Manhole No.6 (Sta. 16+22) |         |            |                          |

|              |                           |         |            | Net Allowable  |
|--------------|---------------------------|---------|------------|----------------|
|              |                           |         | Range of   | Bearing        |
| Lift Station | Structure Type            | Borings | Depth (ft) | Pressure (psf) |
| Harvest Moon | Manhole No.7 (Sta. 17+80  | HMB-5   | 27-28      | 3,000          |
| Lift Station | Manhole No.8 (Sta. 18+25) |         |            |                |
|              | Manhole No.9 (Sta. 23+50) | HMB-4   | 28         | 3,000          |
|              | Manhole No.10 (Sta.       |         |            |                |
|              | 27+00)                    |         |            |                |
|              | Manhole No.11 (Sta.       | HMB-3   | 28         | 5,000          |
|              | 31+10)                    |         |            |                |
|              | Manhole No.12 (Sta.       | HMB-2   | 28         | 2,000          |
|              | 33+15) Manhole No.13      |         |            |                |
|              | (Sta. 34+70) Manhole      |         |            |                |
|              | No.14 (Sta. 37+10)        |         |            |                |
|              | Manhole No.15, 16, 17, 18 | HMB-1   | 27         | 1,800          |
|              | (Sta. 42+37)              |         |            |                |

These allowable bearing pressures include a safety factor of at least 2.0. The above recommendations assume that the final bearing surfaces consist of undisturbed natural soils and that underlying semi-transmissive zones are properly pressure-relieved and stable undisturbed bearing surfaces are attained.

At Northbrook Lift Station, as revealed by boring NBB-1, the surficial high plasticity clay fill possesses a high potential for shrinking and swelling and is considered unsuitable for slab-on-grade construction without any proper treatments. Hence, it is recommended that the high plasticity clay fill be excavated and removed to a depth of at least 24 inches in the slab area and extended at least 5 feet beyond the slab area and replaced it with the compacted structural fill.

At Hunterwood Lift Station area, the relatively weak soils were encountered at the bottom of the proposed manholes, thus, foundation improvements such as cement stabilized sand or crushed stone support for the manholes will be required.

 Bottom Stability. In braced cuts, if tight sheeting is terminated at the base of the cut, the bottom of the excavation can become unstable under certain conditions. This condition is governed by the shear strength of the soils and by the differential hydrostatic head between the groundwater level within the retained soils and the groundwater level at the interior of the trench excavation. For cuts in cohesive soils, as encountered for the excavation depths of 10 to 28 feet, the stability of the bottom can be evaluated in accordance with the procedure outlined on Figure 6. However, at borings HTB-1, HTB-2, HMB-1, HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8 where cohesionless (such as silty sand, fine sand with silt, silt w/sand and silt) were encountered at the invert or within 3 feet from bottom of invert, dewatering will be required to prevent bottom blowup.

- <u>Lateral Earth Pressure</u>. The pressure diagram presented on Figures 5.1 through 5.3 can be used for the design of braced excavation. The lateral earth pressure diagrams presented on Figures 9.1 through 9.3 are applicable for the design of the permanent walls.
- <u>Hydrostatic Uplift Resistance.</u> Structures extending below the groundwater level should be designed to resist uplift pressure resulting from excess piezometric head. Design uplift pressures should be computed based on the assumption that the water table is at ground surface. To resist the hydrostatic uplift at the bottom of the structure, one of the following sources of resistance can be utilized in each of the designs.
  - a. Dead weight of structure,
  - b. Weight of soil above base extensions plus weight of structure, or
  - c. Soil-wall friction plus dead weight of structure.

The uplift force and resistance to uplift should be computed as detailed on Figure 10. In determining the configuration and dimensions of the structure using one of the approaches presented on Figure 10, the following factors of safety are recommended.

Geotest Engineering, Inc. FY2012 Lift Station Renewal And Replacement Northbrook, Hardy Temp, Hunterwood and Harvest Moon WBS No. R-000267-0111-3, Houston, Texas

- a. Dead weight of concrete structure,  $S_{f1} = 1.10$ ,
- b. Weight of soil (backfill) above base extension,  $S_{f2} = 1.5$ , and
- c. Soil-wall friction,  $S_{f3} = 3.0$ .

Friction resistance should be discounted for the upper 5 feet, since this zone is affected by seasonal moisture changes.

5.4.4 Protection of Below Grade Structures. The design of the proper means for protection of below grade structures will depend upon the potential of the aggressivity or corrosivity of soil and groundwater properties. The aggressivity testing was not within the scope of this study. The design of the protection of below grade structures is beyond the scope of services for this study.

<u>5.4.5 Groundwater Control During Construction.</u> The ground water control should be per guidelines as outlined in Section 5.2.3 of this report.

<u>5.4.6 Structure Backfill</u>. Excavations for the proposed structures should be backfilled in accordance with the City of Houston Standard Specifications, Section 02316, "Excavation and Backfill for Structures."

#### 6.0 CONSTRUCTION CONSIDERATIONS

It is understood that the preliminary plans call for the lift station at the Harvest Moon Lift Station to be constructed as a sunken caisson. The caisson procedure eliminates the need for temporary retention system. Caisson can, however, experience problems with alignment and termination at the proper design depth. Once in place, excavation of soils within the interior of caisson will require maintaining the stability of the excavation bottom. Stability considerations of the excavation bottom are similar to those described in Section 5.4.3 of this report. Based on the cohesive soils, water level encountered at the lift station site, the caisson may be constructed by wet method as described below.

Excavation of Lift Station without Dewatering (Wet Method). In wet method, the differential hydrostatic pressure from the groundwater level within the retained soils is balanced by maintaining a sufficient head of water or slurry within the interior of the caisson during excavation. At all times during construction by the wet method, the level of water or slurry within the caisson should be maintained above external water level. Once excavation is complete, a seal slab of appropriate thickness should be constructed by placing concrete through a tremie. Once the concrete has set and sufficient weight has been added to overcome buoyant forces, the water or slurry within the caisson can be pumped out and the structural slab constructed.

Excavation of Lift Station after Dewatering (Dry Method). Instability of the excavation bottom can be attenuated by dewatering the transmissive silty sand. An appropriate dewatering system should be installed outside the perimeter of the caisson area prior to sinking. The dewatering system should maintain the groundwater level at least 5 feet below the proposed bottom of the lift station throughout the period of the excavation and construction of the structural slab.

Of primary concern during dewatering is the loss of fines from the stratum of the dewatering system. To reduce the loss of fines an appropriate filtering system should be incorporated in the design of the well screens of the dewatering system.

#### 7.0 PROVISIONS

The description of subsurface conditions and the design information contained in this report are based on the test borings made at the time of drilling at specific locations. Some variation in soil conditions may however, occur between test borings. Should any subsurface conditions other than those described in our boring logs be encountered, Geotest should be immediately notified so that further investigation and supplemental recommendations can be provided.

The depth of the groundwater level may vary with changes in environmental conditions such as frequency and magnitude of rainfall. The stratification lines on the log of borings represent the approximate boundaries between soil types. Transitions between soil types may be more gradual than depicted.

This report has been prepared for the exclusive use of ARCADIS U.S., Inc. and the City of Houston for the design and construction of FY 2012 Lift Station Renewal and Replacement Project in Houston, Texas.

This report shall not be reproduced without the written permission of Geotest Engineering, Inc., ARCADIS U.S., Inc., or the City of Houston.

#### **ILLUSTRATIONS**

|                                                    | <u>Figure</u> |   |
|----------------------------------------------------|---------------|---|
| Vicinity Map                                       | 1             |   |
| Plan of Borings2                                   | .1 thru 2.    | 6 |
| Boring Log Profiles3                               | .1 thru 3.:   | 5 |
| Symbols and Terms Used on Boring Log Profiles      | 4             |   |
| Excavation Support Earth Pressure5                 | .1 thru 5.    | 3 |
| Stability of Bottom for Braced Cut                 | 6             |   |
| Vertical Stress on Pipe Due to Traffic Loads       | 7             |   |
| Earth Pressure on Pipe Casing Augering             | 8             |   |
| Lateral Earth Pressure Diagram for Permanent Wall9 | .1 thru 9.    | 3 |
| Uplift Pressure and Resistance                     | 10            |   |







#### 60% SUBMITTAL

PRIVATE UTILITY LINES SHOWN

DATE:

ATA:T TEXAS/SWBT UTILITY LINES SHOWN APPROVED ATA:T TEXAS/SBBT FOR UNDERGROUND CONDUIT FACULTIES ONLY SOMATURE VALID FOR ONE YEAR.

CENTERPOINT ENERGY/GAS FACILITIES



## **ARCADIS**

2929 Briarpark Dr Suite 300 Houston, TX 77042

Tel: 713-953-4800 Fax: 713-977-4620 www.arcadis-us.com Texas Registered Engineering Firm F-533

DESIGNED BY: DFR DRAWN BY: WCW DATE: JULY 2013 JOB NO. TX000942.0002

> **PRELIMINARY** REVIEW ONLY NOT INTENDED FOR CONSTRUCTION, BIDDING OR PERMITTING PURPOSES KRISTEN JILL HENNINGS, P.E. P.E. SERIAL No. 90169 DATE: 08/13/13

SURVEYED BY: KUO & ASSOC.

CITY OF HOUSTON
DEPARTMENT OF PUBLIC WORKS AND ENGINEER

LIFT STATION RENEWAL / REPLACEMENT PROJECT

NORTHBROOK LIFT STATION PROPOSED SITE PLAN

C6

WBS# R-000267-0111-4 DRAWING SCALE: 1"=5" CITY OF HOUSTON PM TANU HIREMATH, P.E.



(HMB-1P) HORIZ 🛅

60% SUBMITTAL

| REVISIONS | AP      |
|-----------|---------|
|           | REVSOHS |

PRIVATE UTILITY LINES SHOWN

CENTERPOINT ENERGY/GAS FACILITIES (GAS SERVICE UNES ARE HOT SHOWN)

2929 Briorpark Dr Suite 300 Houston, TX 77042 Tel: 713—953—4800 Fax: 713—977—4620 www.arcadis—us.com Texas Registered Engineering Firm F-533

DATE: AUGUST 2013 JOB NO. TX000967,0004

SURVEYED BY: KUO AHD ASSOCIATES FB HO.: P-5696 CITY OF HOUSTON
DEPARTMENT OF PUBLIC WORKS AND ENGINEERIN

LIFT STATION RENEWAL / REPLACEMENT PROJECT

HAR□EST MOON LIS□ PROPOSED O□ERALL SITE PLAN

C10

| WBS#: R-000267-0111 |
|---------------------|
| PRAWING SCALE:      |
| CITY OF HOUSTON PM  |
| TANU HIREMATH, P.E. |
| SHEET NO. 18 OF 190 |

Legend:

Boring with Piezometer

FIGURE 2.4



\* OBSERVED BY CPS SURVEYING AND PROCESSED IN REFERENCE TO THE CORS DATED APRIL 30, 2013 & GEGID '12A.

ALL BEARINGS AND DISTANCES ARE BASED ON TEXAS STATE PLANE COORDINATE SYSTEM, SOUTH CENTRAL ZONE, NAD83 (CORS96). ALL DISTANCES ARE IN SURFACE.

THE COORDINATES SHOWN HEREON ARE TEXAS SOUTH CENTRAL ZONE NO. 4204 STATE PLANE CRID COORDINATES (NADB3) AND MAY BE BROUGHT TO SURFACE BY DIVIDING BY THE COMBINED SCALE FACTOR 0.999891.

#### LEGEND:

B-XX SURVEY CONTROL POINT NUMBER C-X DESIGN BASELINE POINT NUMBER

SURVEY CONTROL POINT

DESIGN BASELINE POINT

CITY OF HOUSTON MONUMENT

D. BL: DESIGN BASEUNE

S. BL: SURVEY BASELINE ----



2929 Briarpork Dr Suite 300 Suite 300
Houston, TX 77042
Tel: 713–953–4800 Fox: 713–977–4620
www.arcadis-us.com
Texas Registered Engineering Firm F-533

DATE: JULY 2013 JOB NO. TX000967.0006 DESIGNED BY: SC DRAWN BY: CH INTERIM REVIEW ONLY

& associates, Inc.

0700 Richmond Ave., Suite 113, Houston, Texas 770 et 713-975-9789, Fact 713-975-9723, www.lustassocialisi.co SURVEYED BY: KUO & ASSOC. FB NO.: P-XXXX

DOCUMENT INCOMPLETE. NOT INTERIDED FOR PERMIT, BIDDING OR CONSTRUCTION. HAHEEN CHOMORURY, R.P.L.S

TEXAS REG. NO.: 5858 DATE: JULY 2013 CITY OF HOUSTON
DEPARTMENT OF PUBLIC WORKS AND ENGINEERIN

> LIFT STATION RENEWAL / REPLACEMENT PROJECT

SURVEY CONTROL MAP HARVEST MOON LIFT STATION





|           |                    | DESIGN BAS        | ELINE POINTS    | DATA           |            |               |
|-----------|--------------------|-------------------|-----------------|----------------|------------|---------------|
| POINT NO. | NORTHING (SURFACE) | EASTING (SURFACE) | NORTHING (GRID) | EASTING (GRID) | D. BL STA. | DESCRIPTION   |
| C -1      | 13,841,567.95      | 3,045,432.80      | 13,840,059.23   | 3,045,100.85   | 1+00       | BE SET AT 90% |
| C -2      | 13,840,968,61      | 3,045,460.62      | 13,839,459.94   | 3,045,128.67   | 7+00       | - FT A1       |
| C -3      | 13,840,319.33      | 3,045,490.76      | 13,838,810.74   | 3,045,158.80   | 13+49.97   | BEST          |
| C -4      | 13,840,289.98      | 3,045,560.23      | 13,838,781.39   | 3,045,228.27   | 14+25.39   | MILL          |
| C -5      | 13,840,245.19      | 3,045,693.30      | 13,838,737.60   | 3,045,361.32   | 15+65.64   |               |
| C -6      | 13,840,442.93      | 3,045,685.03      | 13,838,934.32   | 3,045,353.05   | 17+62.55   |               |
| C -7      | 13,840,500.23      | 3,045,739.10      | 13,838,991.62   | 3,045,407.11   | 18+50.37   |               |
| C8        | 13,840,507.41      | 3,046,183.79      | 13,838,998.79   | 3,045,851.75   | 22+95.12   |               |
| C -9      | 13,840,531.33      | 3,045,419.90      | 13,839,022.71   | 3,045,087.84   | 25+32.72   |               |
| C -10     | 13,840,552.36      | 3,046,615.64      | 13,839,043.74   | 3,046,283.56   | 27+29.79   |               |
| C -11     | 13,840,854.85      | 3,045,667.63      | 13,839,346.20   | 3,046,335.54   | 30+39.84   |               |
| C -12     | 13,841,006.96      | 3,046,687.26      | 13,839,498.29   | 3,046,355.17   | 31+95.35   |               |
| C -13     | 13,841,255.91      | 3,046,769.69      | 13,839,747.21   | 3,046,437.59   | 34+67.91   |               |
| C -14     | 13,841,316.68      | 3,046,979.86      | 13,839,807.98   | 3,045,647.73   | 36+86.69   |               |
| C -15     | 13,841,064.53      | 3,047,631.05      | 13,839,555.85   | 3,047,298.86   | 43+85      |               |

Legend:



FIGURE 2.5

C.O.H. MONU. XXX/XX ELEVATION = 76.69

FND 5/6" I.R. STA: 2+55.86

ROAD

ASHFORD

DAIRY

D=91"29"00"

S43"20"04"W CL=78.78

R=55.00'\ L=87.82'

C-61

D=9"23"11"

LR#856.06" L=140.24' CH=S71'47'13"E Cl = 140 09"

LN.

HONEYWOOD TRAIL

N881 HMB-4

5/8° 23+06 29-77

442.64

N89°04'34"E-444.75'-21100 22100 2100 22100

HH 15000 11

N89'42'42"E

200.29

C-51 ASHFORD PARKWAY

B-25 [C-

--- R-104

[C-1]

727'03'E-

B-102 --

[C=2] [] \$

HMB-7

(HMB-7P) <sup>18</sup>

нмв-6

[C-3]

583°22'25°E 222.08'

BRIAR PATCH DR

HMB-8

N 13,840,192,1517 (GRID) E 3,045,143,8934 (GRID)



CLIDVEY BASELINE POINTS DATA (TEMPORARY BENCHMARK)

|        |                    |                   | SURVET BA       | iseline poin   | IS UNIN     | (IEMPORMITE D | WICH IMPOUNT |              |                      |
|--------|--------------------|-------------------|-----------------|----------------|-------------|---------------|--------------|--------------|----------------------|
| TRU No | NORTHING (SURFACE) | FASTING (SURFACE) | NORTHING (GRID) | EASTING (GRID) | ELEV. (FT.) | S. BL STA.    | D. BL STA.   | OFFSET (FT.) | DESCRIPTION          |
| B-9    | 13.840.244.74      | 3.045,708,72      | 13,838,736,15   | 3.045,376,74   | 75.29       | 16+52.28      | N/A          | N/A          | SET "X" CUT ON CONC. |
| 8-10   | 13.840.270.37      | 3.045.488.13      | 13,838,761.78   | 3,045,156.17   | 77.56       | 14+30.20      | 13+66.61     | 45.13 RT     | SET "X" CUT ON CONC. |
| B-10   | 13,840,492.02      | 3,045,694.43      | 13,838,983.41   | 3,045,362.45   | 74,81       | 18+99.96      | 18+08.79     | 10.29 LT     | SET "X" CUT ON CONC. |
| B-26   | 13,840,493,03      | 3,045,894,72      | 13.838,984.42   | 3.045,562.72   | 74.51       | 21+00.26      | 20+05.85     | 9.72 RT      | SET "X" CUT ON CONC. |
|        | 13,840,508.36      | 3,046,337.10      | 13,838,999.74   | 3,046,005.05   | 75.09       | 25+42.90      | 24+47.65     | 9.88 RT      | SET "X" CUT ON CONC. |
| Ð-27   | 13.840,541,73      | 3.046,598.15      | 13,839,033.11   | 3.046,266.07   | 72.62       | 28+06.08      | 27+11.86     | 10.00 RT     | SET "X" CUT ON CONC. |
| 8-28   | 13,840,884,47      | 3,046,661,17      | 13,839,375.81   | 3,046,329.09   | 73.01       | 31+54.56      | 30+65.97     | 16.70 LT     | SET "X" CUT ON CONC. |
| 8-42   |                    | 3,046,723.30      | 13.839.667.56   | 3.046,391,20   | 72.71       | 34+52.88      | 33+74.19     | 9.98 RT      | SET "X" CUT ON CONC. |
| B-43   | 13,841,176.25      | 3.045.523.55      | 13,839,230.13   | 3.045,191.59   | 72.81       | 9+60.47       | 9+32.51      | 52.20 LT     | SET 1/2" I.R. W/CAP  |
| B-101  | 13,840,738.77      |                   | 13,839,503.21   | 3,045,132,71   | 74.08       | 6+81.07       | 6+56.96      | 6.04 LT      | SET "X" CUT ON CONC. |
| 8-102  | 13,841,011.88      | 3,045,464.66      | 13,839,888.89   | 3,045,099.56   | 75.27       | 2+93.93       | 2+70.12      | 9.18 RT      | SET "X" CUT ON CONC. |
| B-103  | 13,841,397.60      | 3,045,431.52      |                 | 3,045,098.04   | 76.87       | 1+00          | N/A          | N/A          | SET 1/2" I.R. W/CAP  |
| 8-104  | 13,841,591.53      | 3,045,429.99      | 13,840,082.80   | 3.047,053.82   | 68.30       | 41+82.14      | 41+23.43     | 3.16 RT      | FNO "X" CUT ON CONC. |
| 8-131  | 13,841,156.04      | 3,047,385.99      | 13,839,647.35   |                |             | 37+45.38      | N/A          | N/A          | FND "X" CUT ON CONC. |
| 8-133  | 13,841,316.72      | 3,046,979.85      | 13,839,808.02   | 3,046,647.73   | 71.31       |               | 42+73,14     | 90.68 RT     | SET 1/2" I.R. W/CAP  |
| B-135  | 13,841,020.36      | 3,047,494.00      | 13,839,511.69   | 3,047,161.83   | 67.11       | 43+55.57      | 42773.17     | 30.00 117    | 3E1 1/2 1.11. 11/CA  |

#### TEMPORARY BENCHMARKS

T.B.M. 8-9
SET "X" CUIT ON CONC. AT EAST SIDE OF ASHFORD PARKWAY
AND HONEYWOOD TRAIL INTERSECTION.
ELEV.= 75.29

T.B.M. B=10 SET "X  $^{\circ}$  CUT ON CONC. AT SOUTH SIDE OF BRIAR PATCH DR. AND ASHFORD PARKWAY INTERSECTION. D. STA: 13+86.61/48.13 RT ELEV.= 77.56'

T.B.M. B-25
SET "X " CUT ON CONC. AT NORTHWEST SIDE OF HONEYWOOD TRAIL AND MESTERLY FUN. INTERSECTION.

D. STA: 184-08.79/10.29 LT ELEV.= 74.81"

T.B.M.  $^\prime B-26$  SET  $^\prime X$   $^\prime$  CUT ON CONC. AT SOUTHEAST SIDE OF HONEYWOOD TRAIL AND WESTERLY LN. INTERSECTION. D. STA: 20+05.85/9.72 RT ELEV.= 74.51

T.B.M. B-27
SET "X " CUT ON CONC. AT SOUTH SIDE OF HONEYWOOD
TRAIL APPROX 428 FT. EAST OF HONEYWOOD TRAIL AND
WESTERLY IN. INTERSECTION.
D. STA: 24-47.65/9.88 RT
CLEV.= 75.09'

1.8.M. B-28 SET "X "CUT ON CONC. AT SOUTHWEST OF HONEYWOOD TRAIL AND HARVEST MOON ST. INTERSECTION. D. STA: 27+11.86/10.00 RT ELEV.= 72.62'

SET "X" CUT ON CONC. AT NORTHWEST CORNER OF BLACKSTONE CT. AND HARVEST MOON LN. INTERSECTION. D. STA: 30+65.97/16.70 LT ELEV.= 73.01

T.B.M. B=45 SET "X" CUT ON CONC. AT NORTHEAST SIDE OF WESTERLEY LN. AND HARVEST MOON LN. INTERSECTION. D. STA: 33+74,19/9.98 RT ELEV= 7.2.7

T.B.M. 8-101

SET 1/2 \* I.R. W/CAP AT EAST SIDE OF DAIRY ASHFORD RD. APPROX. 407 FT. NORTH OF DAIRY ASHFORD RD. AND BRIAR PATCH DR. INTERSECTION.

STA: 913.251/52.20 LT ELEV.# 72.817

TB.M. 8-102 SET "X "CUT ON CONC. AT CENTER LINE OF DAIRY ASHFORD RD. APPROX. 668 FT. NORTH OF DAIRY ASHFORD RD. AND BRIAR PATCH DR. INTERSECTION. D. STA: 6+56.96/6.04 LT

ELEV.= 74.08"

T.B.M. B-103
SET "X " CUT ON CONC. AT CENTER LINE OF DAIRY ASHFORD RD. APPROX 1052 FT. NORTH OF DAIRY ASHFORD RD. AND BRIAR PATCH DR. INTERSECTION.

0. STR. 24-70.12/9.18 RT ELEV.= 75.27

T.B.M. 8-104 SET 1/2 "LR. W/CAP AT CENTER LINE OF DAIRY ASHFORD RO. APPROX. 1242 FT. NORTH OF DAIRY ASHFORD RD. AND BRIAR PATCH DR. INTERSECTION. ELEV.= 76.2

T.B.M. B-131 FND "X " CUT ON CONC. AT APPROX. 585 FT. EAST OF HARVEST MOON LO. STA: 41+23.43/3.16 RT ELEV.= 56.3"

T.B.M.  $\theta$ =133 FND "X " CUT ON CONC. AT APPROX. 167 NORTHEAST OF HARVEST MOON IN. ELEV.# 71.31"

T.B.M. 6-135 SET 1/2 " I.R. W/CAP AT APPROX. 752 FT. EAST OF HARVEST MOON UN. 0. STA: 42+73.14/90.68 RT ELEV.= 67.11"



#### BENCHMARK:

CITY OF HOUSTON MONUMENT AN HOFCD BRASS DISC (BEARING HARRIS COUNTY FLOODPLAIN REFERENCE MARK NUMBER 201809) ON RRIGIC AT S. DAIRY ASHFORD RO AND BUFFALD BAYOU LOCATED ON EAST SOEWALK OF NORTHBOUND BRIDGE, AT STREAM CEN

ELEV. 75.69 Feet NAVO 1988 (CORS96)\*

\* OBSERVED BY GPS SURVEYING AND PROCESSED IN REFERENCE TO THE CORS DATED APRIL 30, 2013 & GEOID 12A.

ALL BEARINGS AND DISTANCES ARE BASED ON TEXAS STATE PLANE COORDINATE SYSTEM, SOUTH CENTRAL ZONE, NAD83 (CORS96). ALL DISTANCES ARE IN SURFACE.

THE COORDINATES SHOWN HEREON ARE TEXAS SOUTH CENTRAL ZONE NO. 4204 STATE PLANE CRID COORDINATES (NADB3) AND MAY BE BROUGHT TO SURFACE BY DIVIDING BY THE COMBINED SCALE FACTOR 0.999891.

#### LEGEND:

B-XX SURVEY CONTROL POINT NUMBER

C-X DESIGN BASELINE POINT NUMBER A SURVEY CONTROL POINT

DESIGN BASELINE FOINT

CITY OF HOUSTON MONUMENT

D. BL: DESIGN BASELINE S. BL: SURVEY BASELINE ---

# **ARCADIS**

2929 Briarpark Dr Suite 300 Houston, TX 77042 Tel: 713-953-4800 Fax: 713-977-4620 www.arcadis-us.com Texas Registered Engineering Firm F-533

DATE: JULY 2013 JOB NO. TX000967,0006 KUO INTERIM REVIEW ONLY

DOCUMENT INCOMPLETE. & associates, Inc. NOT INTENDED FOR PERMI BIDDING OR CONSTRUCTION Consulting Engineers & Surveyors 070) Richmong Ave., Suite 113, Houston, Texas 770 et 713-975-0709, Fac. 713-475-650), mmelinassocidaes o Texas Firm Regiotration No. F-4578 SHAHEEN CHOMOHURY, R.P.L.S TEXAS REG. NO.: 5858 DATE: JULY 2013

SURVEYED BY: KUO & ASSOC. FB NO: P-XXXX CITY OF HOUSTON
DEPARTMENT OF PUBLIC WORKS AND ENGINEE

LIFT STATION

RENEWAL / REPLACEMENT PROJECT

SURVEY CONTROL MAP HARVEST MOON LIFT STATION

C2

W85#: R-000267-0111-4 DRAWING SCALE: 1" = 100' CITY OF HOUSTON PM TANU HIREMATH, P.E. SHEET NO. 10 OF 190

FIGURE 2.6





#### GENERAL NOTES:

1. See Figure 2.1 for approximate location of borings and profile section.

2. Data concerning subsurface conditions have been obtained at Data cancerning subsurface conditions have been obtained at boring locations only. Actual conditions between borings may differ from the profile shown here.
 See logs of boring for detailed description of soils encountered in each borehale.
 See Figure 4 for symbols and abbreviations used on this prafile.
 Ground surface elevation at each boring location was based an survey data provided to us by Arcadis, U.S., Inc.

# BORING LOG PROFILE Northbrook Lift Station

300 450 600 HORIZONTAL SCALE IN FEET

- Geotest Engineering, Inc.





#### GENERAL NOTES:

- 1. See Figure 4 for approximate location of borings and profile section.
- 2. Data concerning subsurface conditions have been obtained at baring locations only. Actual conditions between borings may differ from the profile shown here.

  3. See logs of boring for detailed description of soils encountered in each borehole.
- 4. See Figure n far symbols and obbreviotions used on this profile.
- 5. Ground surface elevation at each boring location was bosed on survey data provided to us by Arcadis, U.S., Inc.

# BORING LOG PROFILE Hunterwood Lift Station



- Geotest Engineering, Inc. -





# SYMBOLS AND ABBREVIATIONS USED ON BORING LOG PROFILE

#### LEGEND



# ABBREVIATIONS USED FOR CONSISTENCY/DENSITY

# COHESIVE SOILS V/So: Very Soft V/Lo: Very Loose

V/So: Very Soft

So: Soft

Lo: Loose

Fm: Firm

S/Co: Slightly Compact

M/St: Medium Stiff

Co: Compact

M/De: Medium Dense

V/St: Very Stiff

De: Dense

Hd: Hard

V/De: Very Dense

V/Hd : Very Hard







See Table 2 for typical values of soil parameters

### **BRACED WALL**

For  $\gamma H/c \le 4$ .

 $P_1 = 0.3 \gamma_c' H$   $P_w = \gamma_w H = 62.4 H$  $P_q = 0.5 q$ 

#### Where:

 $\gamma_c'$  = Submerged unit weight of cohesive soil, pcf;

 $\gamma_w$  = Unit weight of water, pcf;

q = Surcharge load at surface, psf;

P<sub>\*</sub> = Lateral pressure, psf;

 $P_1$  = Active earth pressure, psf;

 $P_9$  = Horizontal pressure due to surcharge, psf;

Pw = Hydrostatic pressure due to groundwater, psf;

H = Depth of braced excavation, feet

c = Shear strength of cohesion soil, psf;

# TRENCH SUPPORT EARTH PRESSURE

SUBMERGED COHESIVE SOIL





**BRACED WALL** 

See Table 2 for typical values of soil parameters

$$\gamma'_{\text{avg}} = \frac{\gamma_c' d + \gamma_s' (H-d)}{H}$$

$$P_1 = 0.3 \ \gamma'_{\text{evg}} \ H$$
  
 $P_{\text{w}} = 62.4 \ H$   
 $P_{\text{q}} = 0.5 \ q$ 

Where:

 $\gamma_c$ ' = Submerged unit weight of cohesive soil, pcf;

γ.' = Submerged unit weight of cohesionless soil, pcf;

 $\gamma'_{\text{avg}}$  = Average submerged unit weight of soils, pcf;

q = Surcharge load at surface, psf;

P. = Lateral pressure, psf;

P<sub>1</sub> = Active earth pressure, psf;

P<sub>q</sub> = Horizontal pressure due to surcharge, psf;

Pw = Hydrostatic pressure due to groundwater, psf;

H = Depth of braced excavation, feet

### TRENCH SUPPORT EARTH PRESSURE

SUBMERGED COHESIVE SOIL OVER COHESIONLESS OR SEMI-COHESIONLESS SOIL





BRACED WALL

See Table 2 for typical values of soil parameters

$$P_1 = 0.3 \text{ Y'}_{avg} \text{ H}$$
  
 $P_w = Y_w \text{ H} = 62.4 \text{ H}$   
 $P_q = 0.5_q$ 

$$\gamma'_{avg} = \frac{\gamma_c' d + \gamma_s' (e-d) + \gamma_c' (H-e)}{H}$$

$$Y_w = 62.4 \text{ pcf}$$

Where:

y' = Submerged unit weight of cohesive soil, pcf;

 $\gamma_{s'}$  = Submerged unit weight of cohesionless or semi-cohesionless soil, pcf;

 $\gamma_{...}$  = Unit weight of water, pcf;

 $\gamma'_{avg} = Average submerged unit weight of soil, pcf;$ 

q = Surcharge load at surface, psf;

P = Lateral pressure, psf;

P = Active earth pressure, psf;

P = Horizontal pressure due to surcharge, psf;

P. = Hydrostatic pressure due to groundwater, psf;

H = Depth of braced excavation, feet

# TRENCH SUPPORT EARTH PRESSURE

SUBMERGED COHESIVE SOIL INTERBEDDED WITH COHESIONLESS OR SEMI-COHESIONLESS SOIL

# CUT IN COHESIVE SOIL, DEPTH OF COHESIVE SOIL UNLIMITED (T>0.7 $B_d$ ) L = LENGTH OF CUT



If sheeting terminates at base of cut:

Safety factor, 
$$F_S = \frac{N_cC}{\gamma H + q}$$

N<sub>C</sub> = Bearing capacity factor, which depends on dimensions of the excavation :

B<sub>d</sub>, L and H (use N<sub>C</sub> from graph below)

C = Undrained shear strength of clay in failure zone beneath and surrounding base of cut

 $\gamma$  = Wet unit weight of soil (see Table 2)

q = Surface surcharge (assume q = 500 psf)

If safety factor is less than 1.5, sheeting or soldier piles must be carried below the base of cut to insure stability - (see note)

$$H_1$$
 = Buried length =  $\frac{B_d}{2} \ge 5$  feet

Note: If soldier piles are used, the center to center spacing should not exceed 3 times the width or diameter of soldier pile.

Force on buried length, 
$$P_H$$
: diameter  $\frac{2}{3} \frac{B_d}{\sqrt{2}}$ ,  $P_H = 0.7 (\gamma HB_d - 1.4CH - \pi CB_d)$  in lbs/linear foot

If 
$$H_1 < \frac{2}{3} = \frac{B_d}{\sqrt{2}}$$
,  $P_H = 1.5H_1 (\gamma H - \frac{1.4CH}{B_d} - \pi C)$  in lbs/linear foot



For trench excavations
For square pit or circle shaft

STABILITY OF BOTTOM FOR BRACED CUT





$$\begin{split} \mathbf{P}_1 &= \left[ (\mathbf{H} + \frac{\mathbf{D}}{2}) \times (\mathbf{\gamma} - \mathbf{\gamma}_{\mathbf{w}}) + \mathbf{D}_{\mathbf{w}} \times \mathbf{\gamma}_{\mathbf{w}} \right] + \mathbf{q}_{\mathbf{s}}, \text{ for } \mathbf{D}_{\mathbf{w}} < \mathbf{H} + \frac{\mathbf{D}}{2} \\ \mathbf{P}_1 &= \left[ (\mathbf{H} + \frac{\mathbf{D}}{2}) \times \mathbf{\gamma} \right] + \mathbf{q}_{\mathbf{s}} \\ \mathbf{P}_2 &= (\mathbf{H} \times \mathbf{\gamma}) + \mathbf{q}_{\mathbf{s}} \\ \mathbf{P}_3 &= \left[ (\mathbf{H} + \mathbf{D}) \times \mathbf{\gamma} \right] + \mathbf{q}_{\mathbf{s}} \end{split}$$

Where: P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub> = Tunnel liner load, psf.

D = Tunnel outside diameter, ft.

H = Depth to top of tunnel; ft.

 $D_w$  = Depth to ground water level; ft.

 $^{\gamma}$  = Wet unit weight of soil, pcf (see Table 3)

 $Y_w$  = Unit weight of water, 62.4 pcf

qs = Surcharge load, psf.

# EARTH PRESSURE ON PIPE AND CASING AUGERING







See Table 2 for typical values of soil parameters

$$K_{oc} = 1.0$$

### PERMANENT WALL

$$P_1 = K_{\infty} \gamma_c$$
' H  
 $P_w = \gamma_w H = 62.4 H$   
 $P_q = 0.5 q$ 

#### Where:

 $\gamma_c$ ' = Submerged unit weight of cohesive soil, pcf;

K<sub>∞</sub> = Coefficient of at-rest earth pressure in cohesive soil;

 $\gamma_w$  = Unit weight of water, pcf;

q = Surcharge load at surface, psf;

P. = Lateral pressure, psf;

 $P_t = At$ -rest earth pressure, psf;

P<sub>q</sub> = Horizontal pressure due to surcharge, psf;

Pw = Hydrostatic pressure due to groundwater, psf;

H = Depth of excavation, feet

# LATERAL EARTH PRESSURE DIAGRAM FOR PERMANENT WALL

SUBMERGED COHESIVE SOIL







PERMANANT WALL

See Table 2 for typical values of soil parameters

$$K_{\infty} = 1.0$$
  
 $K_{\infty} = 1 - \sin \phi_s$ 

$$\begin{split} P_{1c} &= \gamma_c! \ d \ K_{oc} \\ P_{1s} &= \gamma_c! \ d \ K_{oc} \\ P_2 &= \left[ \gamma_c! \ d + \gamma_s! \ (H\text{-}d) \right] K_{os} \\ P_w &= \gamma_w \ H = 62.4 \ H \\ P_q &= 0.5 \ q \end{split}$$

#### Where:

 $\gamma_c$ ' = Submerged unit weight of cohesive soil, pcf;

γ'<sub>s</sub> = Submerged unit weight of cohesionless or semi-cohesionless soil, pcf;

φ<sub>s</sub> = Internal friction angle of cohesionless or semi-cohesionless soil, degree;

K<sub>∞</sub> = Coefficient of at-rest earth pressure in cohesive soil;

 $K_{\infty}$  = Coefficient of at-rest earth pressure in cohesionless or semi-cohesionless soil;

 $\gamma_w$  = Unit weight of water, pcf;

q = Surcharge load at surface, psf; .

P. = Lateral pressure, psf;

 $P_{i}$ ,  $P_{ic}$ ,  $P_{is}$  = At-rest earth pressure, psf; i = 1, 2;

 $P_g$  = Horizontal pressure due to surcharge, psf;

Pw = Hydrostatic pressure due to groundwater, psf;

H = Height of wall, feet

# LATERAL EARTH PRESSURE DIAGRAM FOR PERMANENT WALL

SUBMERGED COHESIVE SOIL OVER COHESIONLESS OR SEMI-COHESIONLESS SOIL



See Table 2 for typical values of soil parameters

$$K_{oc} = 1.0$$
  
 $K_{os} = 1 - \sin\phi_s$   
 $\gamma_w = 62.4 \text{ psf}$ 

Where:

## PERMANENT WALL

$$\begin{split} P_{1c} &= \gamma'_{c} d K_{oc} \\ P_{1s} &= \gamma'_{c} d K_{os} \\ P_{2s} &= P_{1s} + \gamma'_{s} (e-d) K_{os} \\ P_{2c} &= [\gamma'_{c} d + \gamma'_{s} (e-d)] K_{oc} \\ P_{3} &= [\gamma'_{c} d + \gamma'_{s} (e-d) + \gamma'_{c} (H-e)] K_{oc} \\ P_{w} &= \gamma_{w} H = 62.4 H \\ P_{q} &= 0.5 q \end{split}$$

 $\gamma_{.'}$  = Effective unit weight of cohesive soil, pcf;

 $\gamma_s'$  = Effective unit weight of cohesionless or semi-cohesionless soil, pcf;

φ<sub>s</sub> = Internal friction angle of cohesionless or semi-cohesionless soil, degree;

 $K_{oc}$  = Coefficient of earth pressure at rest in cohesive soils;

Ko<sub>as</sub> = Coefficient of earth pressure at rest in cohesionless or semi-cohesionless soil;

 $\gamma_w = \text{Unit weight of water, pcf;}$ 

q = Surcharge load at surface, psf;

P<sub>a</sub> = Lateral pressure, psf;

 $P_i$ ,  $P_{ic}$ ,  $P_{is}$  = Earth pressure at rest, psf; i = 1, 2, 3;

P<sub>0</sub> = Horizontal pressure due to surcharge, psf;

P, = Hydrostatic pressure due to groundwater, psf;

H = Height of wall, feet

## LATERAL EARTH PRESSURE DIAGRAM FOR PERMANENT WALL

SUBMERGED COHESIVE SOIL
INTERBEDDED WITH COHESIONLESS
OR SEMI-COHESIONLESS SOIL

Geotest Engineering, Inc.

#### (a) DEAD WEIGHT OF STRUCTURE



#### (c) SOIL-WALL FRICTION PLUS DEAD WEIGHT OF STRUCTURE







$$p_w = H\gamma_w$$

$$F_u = A_b P_w$$

$$\frac{W_{I}}{S_{f_{1}}} = F_{t}$$

$$P_{\mathbf{w}} = H \gamma_{\mathbf{w}}$$

$$F_u = A_b P_w$$

$$\frac{W_1}{S_{f_1}} + \frac{W_2}{S_{f_2}} = F_u$$

$$P_{w} = H\gamma_{w}$$

$$F_u = A_b P_w$$

$$\frac{W_1}{S_{f_1}} + \frac{F_r}{S_{f_3}} = F_u$$

Predominantly Cohesive Soils,  $F_r = \alpha c_m A_m$ Predominantly Cohesionless Soils,  $F_r = p_m A_m K \tan \delta_m$ 

See Table 2 for typical values of soil parameters

Where:  $A_b =$ area of base, sq. ft.

 $A_m$  = cylindrical surface area of layer "m", sq. ft.

c<sub>m</sub> = undrained cohesion of soil layer "m", psf.

 $F_u$  = hydrostatic uplift force, lbs.

F<sub>r</sub> = frictional resistance, lbs.

H = height of buried structure, ft.

K = coefficient of lateral pressure = 0.5. p<sub>m</sub> = average overburden pressure for layer "m," psf.

p<sub>m</sub> = average overburden pressure for lay p<sub>w</sub> = hydrostatic uplift pressure, psf.

 $S_{f_{1,2,2}} = factor of safety.$ 

 $W_1^{1,2,3}$  = dead weight of concrete structure, lbs.

W<sub>2</sub> = weight of backfill above base extension, lbs.

 $\alpha$  = cohesion reduction factor = 0.5.

 $\delta_{\rm m}$  = friction angle between soil layer "m" and concrete wall, degrees = 0.75  $\phi_{\rm m}$ 

 $\phi_{\rm m}$  = internal angle of friction of soil layer "m", degrees.

 $\gamma_{\rm w}$  = 1 unit weight of water = 62.4 pcf.

UPLIFT PRESSURE AND RESISTANCE

# **TABLES**

|                                                                 | <u>T</u> a | <u>able</u> |   |
|-----------------------------------------------------------------|------------|-------------|---|
| Summary of Boring Information.                                  |            | 1           |   |
| Geotechnical Design Parameter Summary: Open-cut Excavation      |            | 2           |   |
| Geotechnical Design Parameter Summary: Trenchless Installation3 | .1 a       | and 3.      | 2 |

TABLE 1 SUMMARY OF BORING INFORMATION

| Lift Station     | Street Name      | Boring No.     | Boring<br>Depth<br>(feet) | Northing <sup>(1)</sup> | Easting <sup>(1)</sup> | Ground<br>Surface<br>Elevation<br>(feet) <sup>(1)</sup> |
|------------------|------------------|----------------|---------------------------|-------------------------|------------------------|---------------------------------------------------------|
| Northbrook<br>LS |                  | NBB-1          | 15                        | 13798493.124            | 3072320.359            | 31.07                                                   |
| Hardy Temp       |                  | HTB-1          | 16                        | 13874905.543            | 3122565.574            | 66.89                                                   |
| LS               |                  | HTB-2          | 20                        | 13875146.324            | 3122915.129            | 67.42                                                   |
| Hunterwood       |                  | HWB-1          | 52                        | 13865469.328            | 3171961.948            | 31.07                                                   |
|                  |                  | HMB-1 (HMB-1P) | 70                        | 13841099.038            | 3047437.251            | 68.74                                                   |
|                  | Harvest Moon Ln  | HMB-2          | 30                        | 13841228.948            | 3046737.508            | 72.98                                                   |
|                  | Harvest Moon Ln  | HMB-3          | 30                        | 13840824.014            | 3046650.885            | 72.90                                                   |
| Howard Mann      | Honeywood Trail  | HMB-4          | 30                        | 13840512.584            | 3046175.108            | 76.23                                                   |
| Harvest Moon     | Honeywood Trail  | HMB-5          | 30                        | 13840507.843            | 3045799.832            | 74.61                                                   |
|                  | Dairy Ashford Rd | HMB-6          | 30                        | 13840420.635            | 3045450.614            | 75.05                                                   |
|                  | Dairy Ashford Rd | HMB-7 (HMB-7P) | 30                        | 13840919.654            | 3045429.022            | 73.12                                                   |
|                  | Dairy Ashford Rd | HMB-8          | 30                        | 13841367.337            | 3045404.05             | 73.55                                                   |

Notes:

<sup>(1)</sup> The survey information for the completed borings was provided to us by ARCADIS.

TABLE 2

GEOTECHNICAL DESIGN PARAMETER SUMMARY OPEN-CUT EXCAVATION

| Lift Station | Boring<br>Nos.   | Stratigraphic<br>Unit                             | Range<br>of<br>Depths,<br>ft                  | Wet<br>Unit<br>Weight,<br>γ,<br>pcf    | Submerged<br>Unit<br>Weight, γ',<br>pcf | Undrained<br>Cohesion,<br>psf             | Internal<br>Friction<br>Angle, φ,<br>degree |
|--------------|------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------|
| Northbrook   | NBB-1            | FILL                                              | 0-6<br>6-10<br>10-15                          | 125<br>125<br>120                      | 63<br>63<br>60                          | 2,000<br>1,000<br>500                     |                                             |
| Hardy Temp   | НТВ-1            | FILL<br>Cohesive<br>Cohesionless                  | 0-4<br>4-8<br>8-16                            | 120<br>130<br>108                      | 60<br>65<br>54                          | 800<br>1,200                              | <br><br>30                                  |
|              | HTB-2            | Cohesive  Cohesionless Cohesive                   | 0-10<br>10-12<br>12-16<br>16-20               | 125<br>130<br>110<br>125               | 63<br>65<br>55<br>63                    | 1,200<br>800<br><br>1,600                 | <br>30<br>                                  |
| Huterwood    | HWB-1            | Cohesive                                          | 0-6<br>6-10<br>10-26                          | 120<br>125<br>120                      | 60<br>63<br>60                          | 1,500<br>1,500<br>1,000<br>500            |                                             |
|              |                  | Cohesionless  Cohesive Cohesionless               | 26-34<br>34-42<br>42-44<br>44-52              | 100<br>104<br>125<br>106               | 50<br>52<br>63<br>53                    | <br><br>600                               | 28<br>30<br><br>30                          |
| Harvest Moon | HMB-1            | Cohesionless  Cohesionless                        | 0-4<br>4-6.5<br>6.5-17                        | 125<br>104<br>100                      | 63<br>52<br>50                          | 4,000<br><br>                             | 28<br>30                                    |
|              |                  | Cohesionless                                      | 17-26<br>26-32<br>32-36                       | 130<br>126<br>100                      | 65<br>63<br>50                          | 1,500<br>600<br>                          | <br><br>28                                  |
|              |                  | Cohesive<br>Cohesionless<br>Cohesive              | 36-40<br>40-46<br>46-55<br>55-62              | 125<br>102<br>125<br>125               | 63<br>51<br>63<br>63                    | 500<br><br>4,500<br>3,500                 | 28<br><br>                                  |
|              | HMB-2 &<br>HMB-3 | Cohesive                                          | 62-70<br>0-8<br>8-16<br>16-23                 | 130<br>125<br>130<br>125               | 65<br>63<br>65<br>63                    | 4,500<br>1,200<br>2,000<br>600            |                                             |
|              | HMB-4            | Cohesive                                          | 23-30<br>0-2<br>2-12<br>12-16<br>16-23        | 125<br>120<br>130<br>130<br>130        | 63<br>60<br>65<br>65<br>65              | 2,200<br>1,000<br>2,500<br>2,800<br>2,200 |                                             |
|              |                  | Cohesionless<br>Cohesive                          | 23-28<br>28-30                                | 98<br>125                              | 49<br>63                                | <br>4,500                                 | 25                                          |
|              | HMB-5            | Cohesive  Cohesionless  Cohesive                  | 0-15<br>15-18<br>18-28<br>28-30               | 128<br>120<br>106<br>125               | 64<br>60<br>53<br>63                    | 4,500<br>1,000<br><br>800                 | <br>30<br>                                  |
|              | HMB-6            | FILL  Cohesive Cohesionless Cohesive Cohesionless | 0-4<br>4-6<br>6-16<br>16-18<br>18-23<br>23-30 | 125<br>120<br>125<br>110<br>125<br>110 | 63<br>60<br>63<br>55<br>63<br>55        | 2,200<br>500<br>1,500<br><br>1,800        | <br><br>30<br><br>30                        |

TABLE 2 (cont'd)

# GEOTECHNICAL DESIGN PARAMETER SUMMARY OPEN-CUT EXCAVATION

| Lift Station | Boring<br>Nos. | Stratigraphic<br>Unit | Range<br>of<br>Depths,<br>ft | Wet<br>Unit<br>Weight,<br>γ,<br>pcf | Submerged<br>Unit<br>Weight, y',<br>pcf | Undrained<br>Cohesion,<br>psf | Internal<br>Friction<br>Angle, φ,<br>degree |
|--------------|----------------|-----------------------|------------------------------|-------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------------|
|              | HMB-7          | Cohesive              | 0-8                          | 126                                 | 63                                      | 3,000                         |                                             |
|              |                |                       | 8-12                         | 125                                 | 63                                      | 1,000                         |                                             |
|              |                | Cohesionless          | 12-23                        | 112                                 | 56                                      |                               | 30                                          |
|              |                |                       | 23-28                        | 125                                 | 63                                      |                               | 28                                          |
|              |                | Cohesive              | 28-30                        | 124                                 | 52                                      | 1,500                         |                                             |
|              | HMB-8          | Cohesive              | 0-10                         | 130                                 | 65                                      | 2,000                         |                                             |
|              |                |                       | 10-12                        | 125                                 | 63                                      | 1,500                         |                                             |
|              |                |                       | 12-14                        | 125                                 | 63                                      | 500                           |                                             |
|              |                |                       | 14-18                        | 125                                 | 63                                      | 3,000                         |                                             |
|              |                | Cohesionless          | 18-28                        | 106                                 | 53                                      |                               | 28                                          |
|              |                | Cohesive              | 28-30                        | 125                                 | 63                                      | 1,500                         |                                             |

#### Notes:

- 1.
- Fill soil includes Fat Clay, Lean Clay w/shell, gravel and calcareous nodules. Cohesive soils include Fat clay, Lean clay, Lean clay w/sand, Silty Clay and Sandy Lean clay. Cohesionless soils include Silty Sand, Silt w/sand, Silt and Clayey Silt.

# **TABLE 3.1** GEOTECHNICAL DESIGN PARAMETER SUMMARY TRENCHLESS INSTALLATION AT

## HARDY TEMP LIFT STATION

(HTB-1 AND HTB-2)

| <u></u>                                  | 1222          | 3-1 AND H1B-2                    |                         |
|------------------------------------------|---------------|----------------------------------|-------------------------|
| PROPERTY                                 |               | COHESIVE<br>SOILS <sup>(1)</sup> | COHESIONLESS SOILS (2)  |
| Wet Unit Weight, γ, pcf                  | 0-4           | 120                              |                         |
| 0 7171                                   | 4-8           | 130                              |                         |
|                                          | 8-12          | 125                              | 108 (HTB-1 only)        |
|                                          | 12-16         | **                               | 108                     |
|                                          | 16-20         | 125                              |                         |
| Submerged Unit Weight, γ', pcf           | 0-4           | 60                               | ***                     |
| 5 7171                                   | 4-8           | 65                               |                         |
|                                          | 8-12          | 63                               | 54 (HTB-1 only)         |
|                                          | 12-16         |                                  | 54                      |
|                                          | 16-20         | 63                               |                         |
| Moisture Content (%)                     | 0-4           | 14                               | ***                     |
| (, 0)                                    | 4-8           | 14                               |                         |
|                                          | 8-12          | 15                               | 15 (HTB-1 only)         |
|                                          | 12-16         | ***                              | 20                      |
|                                          | 16-20         | 25                               |                         |
|                                          |               |                                  |                         |
|                                          | UNDRAINI      | ED PROPERTIES *                  |                         |
| Undrained Cohesian C. nof                | 10*           | 1.000                            |                         |
| Undrained Cohesion, C <sub>u</sub> , psf | 4-8*          | 1,000                            |                         |
|                                          | 8-12*         | 800                              |                         |
|                                          | 12-16*        |                                  |                         |
| Amelo of Internal   Language             | 4.0*          |                                  |                         |
| Angle of Internal, φ, degrees            | 4-8*<br>8-12* | •••                              | 30 (HTB-1 only)         |
|                                          | 12-16*        |                                  | 30 (H1B-1 only)         |
| ***************************************  | 12-10         |                                  | 30                      |
| Elastic Modulus, E, psf                  | 4-8*          | 400,000                          |                         |
| Elastic Modulas, E, psi                  | 8-12*         | 320,000                          | 168,000 (HTB-1 only)    |
|                                          | 12-16*        | 520,000                          | 168,000                 |
| Coefficient of Lateral Earth             | 12 10         |                                  | 100,000                 |
| Pressure at Rest, K <sub>o</sub>         | 4-8*          | 1.2                              |                         |
| 11050410 41 11050, 110                   | 8-12*         | 1.2                              | <b>0.5</b> (HTB-1 only) |
|                                          | 12-16*        |                                  | 0.5                     |
| Poisson's Ratio                          |               | 0.45                             | 0.3                     |
|                                          | DRAINEI       | PROPERTIES *                     |                         |
| Deinal Galacian GC                       | 4.04          | ^                                |                         |
| Drained Cohesion, C', psf                | 4-8*          | 0                                |                         |
|                                          | 8-12*         | 0                                |                         |
|                                          | 12-16*        | 0                                |                         |
|                                          | DRAINEI       | PROPERTIES *                     | T                       |
| Angle of Internal Friction, φ', degrees  | 4-8*          | 24                               |                         |
| ingle of internal friction, ψ, degrees   | 8-12*         | 24                               | 30 (HTB-1 only)         |
|                                          | 12-16*        | ∠⊤<br>•••                        | 30 (111B-1 only)        |
|                                          | 12-10         |                                  |                         |
| Electic Modulus E -of                    | A 0*          | 240.000                          |                         |
| Elastic Modulus, E, psf                  | 4-8*          | 240,000                          | 168,000 (HTB-1 only)    |
|                                          | 8-12*         | 192,000                          |                         |
|                                          | 12-16*        |                                  | 168,000                 |

- Notes: 1. Cohesive soils include lean clay w/sand and sandy lean clay.
  - 2. Cohesionless soils include silty sand.
  - Within tunneling zone (one bore diameter, but not less than 6 feet, above and below tunnel bore).

# **TABLE 3.2**

# GEOTECHNICAL DESIGN PARAMETER SUMMARY TRENCHLESS INSTALLATION HARVEST MOON LIFT STATION

(HMB-1 through HMB-8)

| ** **                                    |        | <del></del>           | HIVIB-8)                                      |
|------------------------------------------|--------|-----------------------|-----------------------------------------------|
| PROPERTY                                 |        | COHESIVE<br>SOILS (1) | COHESIONLESS SOILS (2)                        |
| Wet Unit Weight, γ, pcf                  | 0-4    | 120                   |                                               |
|                                          | 4-12   | 125                   | 100 (HMB-1 only)                              |
|                                          | 12-16  | 120                   | 104 (HMB-1 and HMB-7 only)                    |
|                                          | 16-18  | 130                   | 104 (HMB-1, HMB-6 and HMB-7 only)             |
|                                          | 18-23  | 125                   | 106 (HMB-5, HMB-7 and HMB-8)                  |
|                                          | 23-28  | 125                   | 98 (HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8)     |
|                                          | 28-30  | 120                   | 110 (HMB-6 only)                              |
|                                          |        | 120                   | 110 (III/IB 0 Gilly)                          |
| Submerged Unit Weight, γ', pcf           | 0-4    | 60                    |                                               |
|                                          | 4-12   | 63                    | 50 (HMB-1 only)                               |
|                                          | 12-16  | 60                    | 52 (HMB-1 and HMB-7 only)                     |
|                                          | 16-18  | 65                    | 52 (HMB-1, HMB-6 and HMB-7 only)              |
|                                          | 18-23  | 63                    | 53 (HMB-5, HMB-7 and HMB-8)                   |
|                                          | 23-28  | 63                    | 49 (HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8)     |
|                                          | 28-30  | 60                    | 55 (HMB-6 only)                               |
| Moisture Content (%)                     | 0-4    | 18                    | ***                                           |
|                                          | 4-12   | 20                    | 11 (HMB-1 only)                               |
|                                          | 12-16  | 21                    | 6 (HMB-1 and HMB-7 only)                      |
|                                          | 16-18  | 23                    | 16 (HMB-1, HMB-6 and HMB-7 only)              |
|                                          | 18-23  | 11                    | 19 (HMB-5, HMB-7 and HMB-8)                   |
|                                          | 23-28  | 15                    | 18 (HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8)     |
|                                          | 28-30  | 12                    | 16 (HMB-6 only)                               |
|                                          | UN     | DRAINED PRO           | PERTIES *                                     |
| Undrained Cohesion, C <sub>u</sub> , psf |        |                       |                                               |
|                                          | 4-12*  | 1,000                 | m or                                          |
|                                          | 12-16* | 2,500                 | w w                                           |
|                                          | 16-18* | 2,400                 |                                               |
|                                          | 18-23* | 2,200                 | av 44                                         |
|                                          | 23-28* | 2,500                 |                                               |
|                                          | 28-30* | 800                   |                                               |
| Angle of Internal, φ, degrees            |        |                       |                                               |
|                                          | 4-12*  |                       | 28 (HMB-1 only)                               |
|                                          | 12-16* |                       | 30 (HMB-1 and HMB-7 only)                     |
|                                          | 16-18* |                       | 30(HMB-1, HMB-6 and HMB-7 only)               |
|                                          | 18-23* |                       | 30 (HMB-5, HMB-7 and HMB-8)                   |
|                                          | 23-28* |                       | 28 (HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8)     |
|                                          | 28-30* |                       | 30 (HMB-6 only)                               |
| Elastic Modulus, E, psf                  | 4-12*  | 300,000               | 210,000 (HMB-1 only)                          |
| , , 1                                    | 12-16* | 750,000               | 140,000 (HMB-1 and HMB-7 only)                |
|                                          | 16-18* | 720,000               | 210,000(HMB-1, HMB-6 and HMB-7 only)          |
|                                          | 18-23* | 660,000               | 378,000(HMB-5, HMB-7 and HMB-8)               |
|                                          | 23-28* | 750,000               | 128,000(HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8) |
|                                          | 28-30* | 240,000               | 238,000(HMB-6 only)                           |
| Coefficient of Lateral Earth Pressure    |        |                       |                                               |
| at Rest, K                               | 4-12*  | 1.2                   | 0.5 (HMB-1 only)                              |
| ,                                        | 12-16* | 1.2                   | 0.5 (HMB-1 and HMB-7 only)                    |
|                                          | 16-18* | 1.2                   | 0.5(HMB-1, HMB-6 and HMB-7 only)              |
|                                          | 18-23* | 1.2                   | 0.5 (HMB-5, HMB-7 and HMB-8)                  |
|                                          | 23-28* | 1.2                   | 0.5 (HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8)    |
|                                          | 28-30* | 1.2                   | 0.5 (HMB-6 only)                              |
| Poisson's Ratio                          | 20-30  | 0.45                  | 0.3                                           |
| A CIUDCII D IXAIIO                       |        | 0.70                  | 0.0                                           |

# **TABLE 3.2** GEOTECHNICAL DESIGN PARAMETER SUMMARY TRENCHLESS INSTALLATION HARVEST MOON LIFT STATION (HMB-1 through HMB-8)

| PROPERTY                                      | *************************************** | COHESIVE<br>SOILS (1) | COHESIONLESS SOILS (2)                        |  |  |  |  |
|-----------------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------------|--|--|--|--|
| DRAINED PROPERTIES *                          |                                         |                       |                                               |  |  |  |  |
| Drained Cohesion, C', psf                     |                                         |                       |                                               |  |  |  |  |
| , , ,                                         | 4-12*                                   | 0                     |                                               |  |  |  |  |
|                                               | 12-16*                                  | 0                     |                                               |  |  |  |  |
|                                               | 16-18*                                  | 0                     |                                               |  |  |  |  |
|                                               | 18-23*                                  | 0                     |                                               |  |  |  |  |
|                                               | 23-28*                                  | 0                     |                                               |  |  |  |  |
|                                               | 28-30*                                  | 0                     |                                               |  |  |  |  |
| Angle of Internal Friction, φ', degrees       |                                         |                       |                                               |  |  |  |  |
|                                               | 4-12*                                   | 18                    | 28 (HMB-1 only)                               |  |  |  |  |
|                                               | 12-16*                                  | 18                    | 30 (HMB-1 and HMB-7 only)                     |  |  |  |  |
|                                               | 16-18*                                  | 25                    | 30(HMB-1, HMB-6 and HMB-7 only)               |  |  |  |  |
|                                               | 18-23*                                  | 27                    | 30 (HMB-5, HMB-7 and HMB-8)                   |  |  |  |  |
|                                               | 23-28*                                  | 25                    | 28 (HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8)     |  |  |  |  |
|                                               | 28-30*                                  | 22                    | 30 (HMB-6 only)                               |  |  |  |  |
| Elastic Modulus, E, psf                       |                                         |                       |                                               |  |  |  |  |
| , , <u>, , , , , , , , , , , , , , , , , </u> | 4-12*                                   | 180,000               | 210,000 (HMB-1 only)                          |  |  |  |  |
|                                               | 12-16*                                  | 450,000               | 140,000 (HMB-1 and HMB-7 only)                |  |  |  |  |
|                                               | 16-18*                                  | 432,000               | 210,000(HMB-1, HMB-6 and HMB-7 only)          |  |  |  |  |
|                                               | 18-23*                                  | 396,000               | 378,000(HMB-5, HMB-7 and HMB-8)               |  |  |  |  |
|                                               | 23-28*                                  | 450,000               | 128,000(HMB-4, HMB-5, HMB-6, HMB-7 and HMB-8) |  |  |  |  |
|                                               | 28-30*                                  | 144,000               | 238,000(HMB-6 only)                           |  |  |  |  |

- Notes: 1. Cohesive soils include Fat clay, lean clay and sandy lean clay.
  - 2. Cohesionless soils include silty sand, sandy silt, silt and clayey sand.
  - Within tunneling zone (one bore diameter, but not less than 6 feet, above and below tunnel bore).

# APPENDIX A

|                                       | Figure        |
|---------------------------------------|---------------|
| Log of Borings from This Study        | A-1 thru A-12 |
| Symbols and Terms Used on Boring Logs | A-13          |
| Piezometer Installation Details       | A-14 and A-15 |

|                    |           |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  | ····         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         | ····· |
|--------------------|-----------|----------|----------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------------------|-------------------------|-------------------------|--------------------------------|-----------------|------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------|-----------------------------------------|-------|
|                    | DJECT :   |          | 2/2010 L'M CL-1' -                                                               | LOG OF B                                    |                                       |                                              |                         |                         |                                |                 | DD0              | JEOT         | . NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . : 11                                                 | 4010   | 4001                                    |       |
| 1.00               | CATIONI . | }<br>V   | Y2012 Lift Station<br>Hardy Temp, Hunter<br>VBS No. R-000267<br>V 13798493.12, E | rwoad, Harvest<br>'-0111-3; City            | Moon<br>of F                          | Lift<br>earl                                 | t Sta<br>and,           | tion:<br>Tex            | 2                              |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEPTI                                                  |        |                                         |       |
| SUF                | RFACE E   | ر<br>LE۱ | Vorthbrook LS; See<br>/ATION : 62.94 FT.                                         | Plan of Borin                               | gs (Fi                                | gure                                         | 2.1                     | )                       |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25-13                                                  |        |                                         |       |
| ELEVATION, FEET    | TH, FEET  | SAMPLES  | SAMPLER : Shelby<br>DRY AUGER :<br>WET ROTARY :                                  | 0.0 TO 15.0 F                               | T.                                    | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT | NT PASSING<br>200 SIEVE | DRY UNIT WEIGHT,<br>PCF | NATURAL MOISTURE<br>CONTENT, % | LIQUID LIMIT, % | PLASTIC LIMIT, % | ITY INDEX, % | () H <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RAINED S<br>AND PEN<br>ACONFIN<br>ACONSOL<br>RIAXIAL C | ETROME | TER<br>PRESS                            | SION  |
| 1 1                | DEP       |          | DESCRIPTION                                                                      | OF MATERIAL                                 | · · · · · · · · · · · · · · · · · · · | STANDARE<br>TEST, BLO                        | PERCENT P               | DRY U                   | NATURA<br>CON                  | LIQUID          | PLASTI           | PLASTICITY   | Δτα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RIAXIAL (<br>)RVANE<br>5 1.0                           |        |                                         |       |
| - 62.9-<br>- 62.2- |           |          | 3" Asphalt over<br>Shell Bose                                                    |                                             |                                       |                                              |                         |                         | 14                             |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        | <b>)</b> Δ                              |       |
|                    |           |          | FILL: hard gray<br>fat clay<br>—very stiff to h<br>w/calcareous                  | ard                                         | , <b>1</b>                            |                                              |                         |                         | 20                             | 61              | 24               | 37           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>\rightarrow</b>                                     |        |                                         |       |
|                    | - 5-      |          | -w/ferrous node<br>ferrous stains<br>-very stiff 4'-6                            | ules and<br>2'-15'                          |                                       |                                              |                         |                         | 18                             |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | φ <sub>2</sub>                                         | 2      |                                         |       |
|                    |           |          | -stiff 6'-10'                                                                    |                                             |                                       |                                              |                         |                         | 27                             |                 |                  |              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha$                                               |        |                                         |       |
|                    | - 10-     |          | -medium stiff t<br>10'-12'                                                       | o stiff                                     |                                       |                                              | 86                      | 96                      | 28                             | 56              | 27               | 29           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
|                    |           |          | -medium stiff 1                                                                  | 2'-15'                                      |                                       |                                              |                         |                         | 28                             |                 |                  |              | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |        |                                         |       |
| - 47.9-            | - 15      |          |                                                                                  | MANUSCOOL MANUSCOOL                         |                                       |                                              |                         |                         | 31                             |                 |                  |              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |        |                                         |       |
| -                  |           |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
| -                  | - 20-     |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
| -                  |           |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
|                    | - 25-     |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 | ****             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
|                    |           |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              | ALL THE PROPERTY OF THE PROPER |                                                        |        |                                         |       |
|                    |           |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
| -                  | 30-       |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  | }            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
|                    |           |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        | *************************************** |       |
|                    | 35-       |          |                                                                                  |                                             |                                       |                                              |                         |                         |                                |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
| NO                 |           | WAT      |                                                                                  | RING DRILLING.<br>F DRILLING.<br>Geotest En | ain c                                 | ovi.                                         | n ~                     | I~                      | Λ -                            |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |
|                    |           |          |                                                                                  | Jediesi Ell                                 | ynie                                  | CIU                                          | ιυ <b>y</b> ,           | 110                     | ·                              |                 |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |        |                                         |       |

| PROJECT : PY2012 List Station Renewol/Replacement - Montharook, Hardy Term, Hundrevoed, Hervest Moot List Sations Will State No. 8 - 000267-0111-3; Gity of Pendrod, Texos COMPLETION DEPTH : 16.0 FT. DISTRICT OF PROJECT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT OF PROJECT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT OF PROJECT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT OF PROJECT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT OF PROJECT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT NO. : 1140194901 COMPLETION DEPTH : 16.0 FT. DISTRICT N | Γ             |                                |        |             |         | LOG OF BORIN                                                        | G N                                        | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HTE              | 3-1                            |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|--------|-------------|---------|---------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|----|--------|--------|-----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| LOCATION : N 1387/4905.1, E 312256.5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | PR(                            | OJEC.  | T :         | Н       | lardy Temp. Hunterwood. Harvest Moor                                | ı Lift                                     | : Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tions            | S                              |    | PRO    | JECT   | Γ NO. :                           | 1140                                    | 01949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 901                                   |
| DRY AUGER   D.D. TO 10.0 FT.   DRY AUGER   DRY AUGER   D.D. TO 10.0 FT.   DRY AUGER   DR   |               |                                |        |             | N       | l 13874905.54, E 3122565.57<br>lardy Temp LS: See Plan of Borinas ( |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         | : 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O FT.                                 |
| FILL: dark groy sandy lean clay — w/roots 0'-1' — w/roots 0'-1 |               | _                              | ОЕРТН, | SYMBOL      | SAMPLES | DRY AUGER : 0.0 TO 10.0 FT.  WET ROTARY : 10.0 TO 16.0 FT.          | TANDARD PENETRATION<br>EST, BLOWS PER FOOT | PERCENT PASSING<br>NO. 200 SIEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRY UNIT WEIGHT, | NATURAL MOISTURE<br>CONTENT, % |    | LIMIT, | INDEX, | O HAND  UNCO  UNCO  TRIAX  △ TORV | PENET<br>NFINED<br>NSOLIDA<br>IAL COM   | ROMETE<br>COMPR<br>ATED-U<br>MPRESSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R<br>ESSION<br>NDRAINEI<br>ON         |
| - Wygravel 0'-4' - medium stiff to stiff gray 1'-2' - yellowish brown and gray 2'-4' Very stiff yellowish brown ond gray SANDY LEAN CLAY (CL) w/sand seams - stiff to very stiff 6'-8'  Medium dense gray SILTY  59 115 16 37 16 21  Medium dense gray SILTY  12 18 20  15 15 15 37 16 21  21 20  DEPTH TO WATER IN BORING: W: FREE WATER 1st ENCOUNTERED AT 10.0 FT, DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 116.0 FT, AT END OF DRILLING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŀ             | 66.9-                          | - 0-   | $\boxtimes$ |         | clay                                                                | 101-                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   | 1.0                                     | 3 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                   |
| 27-4*   Very stiff yellowish brown and groy SANDY LEAN CLAY (CL) w/sond seams   10-15-15   Medium dense groy SILTY   12   18   20   19   21   23   20   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -             | 62.9-                          |        |             |         | -w/gravel 0'-4'<br>-medium stiff to stiff gray<br>1'-2'             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 16                             |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| CL) W/sand seams — stiff to very stiff 6'-8'    10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                | - 5-   |             |         | Very stiff yellowish brown                                          |                                            | Absumption of the Absumption o |                  | 17                             |    |        |        |                                   | Δ                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| SAND (SM)  12 18 20  19 21  - 15 12 20  - 20  - 20  - 25  - 30  DEPTH TO WATER IN BORING:  *: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 15.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u> Δ̈́ - | 58.9-                          |        |             | X       | (CL) w/sand seams<br>-stiff to very stiff 6'-8'                     | 12                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115              |                                | 37 | 16     | 21     |                                   | 40                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  #: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                | - 10-  |             | X       | SAND (SM)                                                           | 12                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 20                             |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  FIFREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT.  HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                | - 15-  |             |         |                                                                     | 19                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 21                             |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 118! ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             | 50.9                           |        |             | XI.     |                                                                     | 23                                         | THE REPORT OF THE PROPERTY OF  |                  | 20                             |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  \$\frac{\pi}{\pi}\$: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                | - 20-  |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  \$\frac{\pi}{\pi}\$: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | <br> -<br> -<br> -<br> -<br> - |        |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | -                              | - 25-  |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | -                              |        |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         | AND THE PROPERTY OF THE PROPER |                                       |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT.  HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                | - 30-  |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT.  HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | -                              |        |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| ¥: FREE WATER 1st ENCOUNTERED AT 10.0 FT. DURING DRILLING; AFTER 10.0 MIN. AT 8.0 FT. HOLE OPEN TO 16.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                | - 35-  |             |         |                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |    |        |        |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| I and $I$ and $I$ and $I$ are $I$ are $I$ and $I$ are $I$ a    |               | Ā:                             | FREE   | WAT         | ÉR      | 1st ENCOUNTERED AT 10.0 FT. DURING DE 16.0 FT. AT END OF DRILLING.  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                | I  | N. AT  | 8.     | 0 FT.                             | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |

| PE                           | ROJECT :    | LOG OF BORIN                                                                                                                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |                 | DPA              | IFC                 | Γ NO. :                      | 1140                                       | 194901                                                         |
|------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|-----------------|------------------|---------------------|------------------------------|--------------------------------------------|----------------------------------------------------------------|
| 1                            |             | Hordy Temp, Hunterwood, Harvest Moo<br>WBS No. R-000267-0111-3; City of<br>N 13875146.32, E 3122915.13<br>Hardy Temp LS; See Plan of Borings<br>EVATION: 67.42 FT. | n Lift                                    | Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ntion            | 2                              |                 |                  |                     |                              |                                            | 20.0 FT.                                                       |
| SL                           | IRFACE ELE  | EVATION: 67.42 FT.                                                                                                                                                 | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                | ·                              |                 | DATE             | Ξ:                  | 06-25-                       |                                            |                                                                |
| -<br>92.4<br>ELEVATION, FEET | DEPTH, FEET | DESCRIPTION OF MATERIAL                                                                                                                                            | STANDARD PENETRATION TEST, BLOWS PER FOOT | PERCENT PASSING<br>NO. 200 SIEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRY UNIT WEIGHT, | NATURAL MOISTURE<br>CONTENT, % | LIQUID LIMIT, % | PLASTIC LIMIT, % | PLASTICITY INDEX, % | O HAND UNCON TRIAXIA  TORVAN | PENETRO<br>IFINED O<br>ISOLIDAT<br>IL COMP | R STRENGTH  DMETER  COMPRESSION  ED-UNDRAINE  RESSION  2.0 2.5 |
|                              | - 5-        | Very stiff gray and brown SANDY LEAN CLAY (CL) w/ferrous stains -w/sand ond shell 0'-14" -w/calcareous nodules 14"-4' -stiff to very stiff 2'-4' -stiff 4'-8'      |                                           | AND THE PROPERTY OF THE PROPER | 114              | 14                             | 30              | 16               | 14                  |                              |                                            |                                                                |
| Σ                            |             | -w/ferrous nodules 6'-10' -stiff to very stiff 8'-10'                                                                                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2 7            | 15                             | 50              | 10               | , ,                 | <b>■</b> 0                   |                                            |                                                                |
| - 55.4·                      | - 10-       | -medium stiff to very stiff<br>10'-12'                                                                                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120              | 14<br>15                       |                 |                  |                     |                              | 0                                          |                                                                |
| 33.1                         | 15-11       | Medium dense brown SILTY<br>SAND (SM)                                                                                                                              | 16                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 22                             |                 |                  |                     |                              |                                            |                                                                |
| - 51.4-                      |             | Stiff to very stiff gray and brown LEAN CLAY (CL) w/sand seams -very stiff w/clay seams 18'-20'                                                                    | 22                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 19<br>17                       |                 |                  |                     |                              | 0                                          |                                                                |
| <del>-</del> 47.4-           | 20-         |                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 31                             |                 |                  |                     |                              |                                            |                                                                |
|                              | - 25-       |                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |                 |                  |                     |                              |                                            |                                                                |
|                              | - 30-       |                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |                 |                  |                     |                              |                                            |                                                                |
|                              |             |                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |                 |                  |                     |                              |                                            |                                                                |
|                              | - 35-       |                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |                 |                  |                     |                              |                                            |                                                                |
| <b>克</b> :                   | FREE WATE   | R IN BORING: R 1st ENCOUNTERED AT 12.0 FT. DURING D O 20.0 FT. AT END OF DRILLING                                                                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                | 1IM C           | N. AT            | 8.9                 | 9 FT.                        |                                            |                                                                |

|                 | OJECT :     | FY2012 Lift Station Renewal/R<br>Hardy Temp, Hunterwood, Harv<br>WBS Na. R-000267-0111-3;              | rest Moon Li<br>City of Pear | ft Sto                           | otions                  | 3                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | NO. :                           |                                         |                                 |                            |
|-----------------|-------------|--------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|-------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|---------------------------------|-----------------------------------------|---------------------------------|----------------------------|
|                 |             | N 13865469.33, E 3171961.95<br>Hunterwood LS; See Plan of E                                            | 5                            |                                  |                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | TION DI                         |                                         | : 52                            | 2.0                        |
| SUF             | RFACE E     | LEVATION: 31.07 FT.                                                                                    | z                            | <u>=</u> T                       | Τ                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE             |                    | 06-26                           |                                         | FAR S                           | TRE                        |
| ELEVATION, FEET | DEPTH, FEET | SAMPLER: Shelby Tube/Split:  DRY AUGER: 0.0 TO 24.0  WET ROTARY: 24.0 TO 52.0  DESCRIPTION OF MATERIAL | ARD LT. CARD PENETRA         | PERCENT PASSING<br>NO. 200 SIEVE | DRY UNIT WEIGHT,<br>PCF | NATURAL MOISTURE<br>CONTENT, % | LIQUID LIMIT, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLASTIC LIMIT, % | LASTICITY INDEX, % | UNDRAIM  HAND  UNCO TRIAN  TORV | PENET<br>ONFINED<br>ONSOLID<br>KIAL COI | ROMET<br>COMF<br>ATED-<br>MPRES | TER<br>PRES<br>UNI<br>SIOI |
| 31.1-           | 0 4 4       | 6" Concrete over 6"                                                                                    | 127                          |                                  |                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | 0.5                             | 1.0 1                                   | .5 2.                           | 0                          |
| 30.1-           |             | Very stiff groy FAT CLAY (CH) w/sand seams, feri nodules and ferrous stair                             | rous                         |                                  |                         | 21<br>23                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                 |                                         |                                 |                            |
|                 | - 5-        | -stiff to very stiff 4'-6'                                                                             |                              |                                  |                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                 |                                         |                                 | ļ                          |
|                 |             | -stiff 6'-8'                                                                                           |                              |                                  |                         | 24                             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1              | 2.7                |                                 | ) <b>A</b>                              |                                 |                            |
|                 |             | -medium stiff to stiff<br>8'-12'                                                                       |                              | 93                               | 96                      | 25<br>34                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21               | 37                 |                                 |                                         |                                 |                            |
|                 | 10-         | -medium stiff 12'-18'                                                                                  |                              |                                  |                         | 30                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | 00                              |                                         |                                 |                            |
|                 |             | -slickensided 14'-16'                                                                                  |                              |                                  |                         | 32                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | <u>a</u>                        |                                         |                                 |                            |
|                 | - 15-       |                                                                                                        |                              | 86                               | 84                      | 35                             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22               | 36                 | 02                              |                                         |                                 |                            |
|                 |             | -medium stiff to stiff<br>18'-20'                                                                      |                              |                                  |                         | 32                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | 0                               |                                         |                                 |                            |
|                 | - 20-       | -medium stiff 20'-22'                                                                                  |                              |                                  |                         | 35                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | 04                              |                                         |                                 |                            |
| 9.1             |             | Medium stiff gray SANDY<br>LEAN CLAY (CL) w/sand<br>seams                                              |                              |                                  |                         | 24                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | (A)                             |                                         |                                 |                            |
| 5.1             | - 25-       | -cloyey sond 24'-26'                                                                                   |                              |                                  |                         | 20                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                 |                                         |                                 |                            |
|                 |             | Loose groy SILTY SAND (S                                                                               |                              | 7 17                             |                         | 21                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                 |                                         |                                 |                            |
|                 | - 30-       | -medium dense 30'-32'                                                                                  |                              | 8                                |                         | 25                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                 |                                         |                                 |                            |
| -               |             | —dense 32'—34'                                                                                         | 17                           |                                  |                         | 22                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                 |                                         |                                 |                            |
| -2.9<br>-3.9    | 35-         | Medium dense gray FINE S (SP)                                                                          | SAND 49                      |                                  |                         | 21                             | The second secon |                  |                    |                                 |                                         |                                 |                            |

| PROJECT   Fizaliz Lift Station Renewor/Replocement   Note   1140194901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |            |                         | LOG OF BORIN                          | G N                 | 10.          | HW    | B-1     | C      | ont'   | d        |        |       |       |        | -        |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------|-------------------------|---------------------------------------|---------------------|--------------|-------|---------|--------|--------|----------|--------|-------|-------|--------|----------|----|
| WES No. R-000267-0311-3; City of Pearland, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRO   | )JEC1 | :          | F                       | Y2012 Lift Station Renewal/Replaceme  | nt –                | - No         | rthbi | oak,    |        |        |          | NO     | . :   | 1140  | )194   | 901      |    |
| SURFACE   ELEVATION   31.07 FT.   SAMPLER   Substitution   ST.07 FT.    | 100   | ATIO  | <b>N</b> . | W                       | /BS No. R-000267-0111-3; City of F    | Pearlo              | and,         | Tex   | s<br>ds |        | COM    | DIF.     | LIUVI  | DEE   | тц    | . 52   | U E.     | т  |
| SAMPLER : Shelby   Use/Spit   Soon   DRY AUGER : 0.0 TO 24.0 FT.   WET ROTARY : 24.0 TO 52.0 FT.   WET ROTARY : 24.0 TO 52.0 FT.   DESCRIPTION OF MATERIAL   DESCRIPTION OF    |       | _     |            | Н                       | unterwood LS: See Plan of Borings (F  | igure               | e 2.3        | 3)    |         |        |        |          |        |       |       | . 02   | .0 1     | ٠. |
| Medium dense gray FINE SAND  -10.9  Medium stiff gray LEAN CLAY (CL) w/sand  -12.9  45  Medium dense gray FINE SAND (SP-SM) w/silt  -w/clay seams 46'-52'  19 10 20  21 21  22 20  23 21  24 27 40 17 23 20  18 20  25 21  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  21 20  22 20  23 20  24 27  40 17 23 20  26 20  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  21 21 22 20  22 20  23 20  24 27  25 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  21 20 20  22 20  23 20  24 20  25 20  26 2 2 24  26 2 2 24  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  2 |       |       |            | П                       | · · · · · · · · · · · · · · · · · · · | NO<br>NT<br>NT      | (3           | Ι     | 1.1     |        |        |          |        |       | SHE   | AR ST  | RENGT    | Ή, |
| Medium dense gray FINE SAND  -10.9  Medium stiff gray LEAN CLAY (CL) w/sand  -12.9  45  Medium dense gray FINE SAND (SP-SM) w/silt  -w/clay seams 46'-52'  19 10 20  21 21  22 20  23 21  24 27 40 17 23 20  18 20  25 21  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  21 20  22 20  23 20  24 27  40 17 23 20  26 20  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  21 21 22 20  22 20  23 20  24 27  25 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  21 20 20  22 20  23 20  24 20  25 20  26 2 2 24  26 2 2 24  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  2 | FEET  | Ь     | _          | ES                      | • • • • •                             | ETRAT               | ASSIN(       | EIGH1 | STUR!   |        |        | IDEX,    | _      |       | PENET | ROMETI |          |    |
| Medium dense gray FINE SAND  -10.9  Medium stiff gray LEAN CLAY (CL) w/sand  -12.9  45  Medium dense gray FINE SAND (SP-SM) w/silt  -w/clay seams 46'-52'  19 10 20  21 21  22 20  23 21  24 27 40 17 23 20  18 20  25 21  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  21 20  22 20  23 20  24 27  40 17 23 20  26 20  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  21 21 22 20  22 20  23 20  24 27  25 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  21 20 20  22 20  23 20  24 20  25 20  26 2 2 24  26 2 2 24  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  2 | ion,  | H, FE | YMBO       | AMPL                    | WET ROTARY: 24.0 TO 52.0 FT.          | DWS F               | NT P/        | NIT * | L MOI   | LIMIT  | C LIM  | <u>∠</u> | _      |       |       |        |          |    |
| Medium dense gray FINE SAND  -10.9  Medium stiff gray LEAN CLAY (CL) w/sand  -12.9  45  Medium dense gray FINE SAND (SP-SM) w/silt  -w/clay seams 46'-52'  19 10 20  21 21  22 20  23 21  24 27 40 17 23 20  18 20  25 21  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  21 21 21  22 20  23 20  24 27  45 27  40 17 23 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  21 20  22 20  23 20  24 27  40 17 23 20  26 20  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  21 21 22 20  22 20  23 20  24 27  25 20  26 2 2 24  27 40 17 23 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  21 20 20  22 20  23 20  24 20  25 20  26 2 2 24  26 2 2 24  27 20  28 20  29 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  20 20  2 | ELEVA |       |            |                         | DESCRIPTION OF MATERIAL               | TANDARE<br>EST, BL( | PERCE<br>NO. | DRY U | NATURA  | LIQUID | PLASTI | PLASTIC  | Δт     | ORVAN | ΙE    |        |          |    |
| -10.9 Medium stiff gray LEAN CLAY (CL) w/sand  -12.9 Medium dense gray FINE SAND (SP-SM) w/silt -w/clay seams 46'-52'  -50  -50  -60  DEPTH TO WATER IN BORING: Fire ERE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLG OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.9   | - 35- |            | M                       |                                       | 1                   |              |       | 20      |        |        |          | 0.     | ۱. ر  | 0 1.  | 3 2.0  | 7 2.3    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |            | $\overline{\mathbb{N}}$ | (SP)                                  |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| -10.9 Medium stiff gray LEAN CLAY (CL) w/sand  -12.9 Medium dense gray FINE SAND (SPSM) w/sill -w/clay seams 46'-52'  19 10 20  23 20  -20.9 -55556565656570-  DEPTH TO WATER IN BORING: #: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING, AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO \$5.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |            | $\mathbb{A}$            | dono 39.51 401                        | 26                  | 2            |       | 24      |        |        |          |        |       |       |        | ŀ        |    |
| Addition   Stiff groy LEAN CLAY (CL)   W/sond   74   97   27   40   17   23   29   17   20   17   20   18   19   10   20   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |            | M                       | -delise 36.5 -40                      | 32                  |              |       | 20      |        |        |          |        |       |       |        |          |    |
| Medium stiff groy LEAN CLAY (CL) w/sond  -12.9  45  Medium dense gray FINE SAND (SP-SM) w/silt -w/clay seams 46'-52'  26  27  497  27  40  17  20  19  10  20  21  21  21  21  DEPTH TO WAITER IN BORING: #: FREE WAITER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER HOLE OPEN TO 55.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | - 40- |            | H                       |                                       |                     |              |       | -       |        |        |          |        |       |       |        |          |    |
| C(L) w/sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -10.9 |       | ,,,,       | M.                      | Modium offf area LEAN CLAY            | 16                  |              |       | 23      |        |        |          |        |       |       |        |          |    |
| Medium dense gray FINE SAND (SP-SM) w/silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |            |                         | (CL) w/sand                           |                     | 74           | 97    | 27      | 40     | 17     | 23       | a      |       |       |        |          |    |
| - 20.9 - W/Clay seams 46'-52' 26 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -12.9 | - 45- |            |                         | Medium dense gray FINE SAND           |                     |              |       |         |        |        |          | Y_DEED |       |       |        |          |    |
| 23 19 21 21 21 21 21 21 21 21 21 21 21 21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     |       |            | Å                       |                                       | 26                  |              |       | 20      |        |        |          |        |       |       |        |          |    |
| 23 19 21 21 21 21 21 21 21 21 21 21 21 21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |            | M                       |                                       | 19                  | 10           |       | 20      |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  #: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |            |                         |                                       |                     |              |       | 2.0     |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  **FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | - 50- |            | Д                       |                                       | 23                  |              |       | 19      |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  **FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |            | M                       |                                       | 21                  |              |       | 21      |        |        |          |        |       |       |        | į        |    |
| DEPTH TO WATER IN BORING:  Y: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.  HOLE OPEN TO \$2.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -20.9 |       |            |                         |                                       | 1 -                 | -            |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  Y: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.  HOLE OPEN TO \$2.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  Y: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 55-   |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        | $\dashv$ |    |
| DEPTH TO WATER IN BORING:  Y: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  Y: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -     |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  Y: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 60-   |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        | $\top$   |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -     |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT. HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | e E   |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.  HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 00-   |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.  HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.  HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        | -        |    |
| DEPTH TO WATER IN BORING:  ¥: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.  HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 70-   |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
| ♀: FREE WATER 1st ENCOUNTERED AT 24.0 FT. DURING DRILLING; AFTER 20.0 MIN. AT 19.4 FT.<br>HOLE OPEN TO 52.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |            |                         |                                       |                     |              |       |         |        |        |          |        |       |       |        |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 査:    | FREE  | WAT        | ER                      | 1st ENCOUNTERED AT 24.0 FT. DURING DE | RILLIN              | G; AF        | TER   | 20.0    | о мі   | N. AT  | 19.      | 4 FT.  |       |       |        |          |    |
| · m c m c · m c · , y · c · m c · c · c · , y · c · * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOl   | L OF  | ŁN         | 10                      |                                       | eeri                | ng.          | Ιγ    | c.      |        |        |          |        |       |       |        |          |    |

| PROJECT : PY2012 Lift Station Renewal/Replacement — Northbrook, Hardy Frency, Hunterwood, Hervest Moon Lift Stations (1985) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 000267 – 0111 – 3; city of Pearland, Texas (1996) No. R. – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 01226 – 012 |          |                    |               |                          | LOG OF BOF                                                                               | RING    | NO.    |                                         | НМІ        | 3-1              | (+       | IMB    | — 1 F            | <sup>2</sup> ) |                |       |                |         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|---------------|--------------------------|------------------------------------------------------------------------------------------|---------|--------|-----------------------------------------|------------|------------------|----------|--------|------------------|----------------|----------------|-------|----------------|---------|------|
| SURFACE ELEVATION : 68.74 FT.    SAMPLER : Shelby Tube/Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F        | PROJEC             | Т:            | н                        | ardy Tamp Hunterwood Harvest M                                                           | oan l   | f+ S   | tat                                     | tions      | 2                |          | PRO    | JEC <sup>-</sup> | ΓΝΟ            | ). :           | 114   | 0194           | 4901    |      |
| SAMPLER : Shelby Tube/Split Spoen   State   Shelby Tube/Split Spoen   State   Shelby Tube/Split Spoen   Shelby Tube/Split Split  | 1        |                    |               | Н                        | arvest Moon LS: See Plan of Borir                                                        | igs (F  | gure   | e 2                                     | 2.4)       | 13               |          |        |                  |                |                |       | : 70           | 0.0     | FT.  |
| 8.5 Shell Bose Hord brown LEAN CLAY (CL) -reddish brown w/shell w/terrous nodules and ferrous stains 2'-4' Medium dense brown SANDY SILT (ML) w/sond and clay seams  Wery stiff reddish brown ond gray LEAN CLAY (CL) w/sand, ferrous nodules ond ferrous stains -w/vertical sand seams  20'-28'  B.5 Shell Bose B. 33 16 17  A O  A O  A O  A O  A O  A O  A O  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | JONITAC            |               |                          |                                                                                          | NOIL    | 5 5    |                                         | <u>.</u>   | 3E               |          |        | %                | 1              |                | D SH  | EAR S          | TREN    | GTH  |
| 8.5 Shell Bose Hord brown LEAN CLAY (CL) -reddish brown w/shell w/terrous nodules and ferrous stains 2'-4' Medium dense brown SANDY SILT (ML) w/sond and clay seams  Wery stiff reddish brown ond gray LEAN CLAY (CL) w/sand, ferrous nodules ond ferrous stains -w/vertical sand seams  20'-28'  B.5 Shell Bose B. 33 16 17  A O  A O  A O  A O  A O  A O  A O  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , FEE    | FEET               | BOL           | PLES                     |                                                                                          | ENETR   | PASSI  | SIEVE                                   | WEIGH<br>F | AOISTUI<br>NT, % |          | LIMIT, |                  | _              |                |       |                |         | ION  |
| 8.5 Shell Bose Hord brown LEAN CLAY (CL) -reddish brown w/shell w/terrous nodules and ferrous stains 2'-4' Medium dense brown SANDY SILT (ML) w/sand and clay seams  Wery stiff reddish brown ond gray LEAN CLAY (CL) -dense 8.5'-10' -loose 10.5'-12'  Very stiff reddish brown ond gray LEAN CLAY (CL) w/sand, ferrous nodules ond ferrous stains -w/vertical sand seams 20'-28'  Dense gray SILT (ML) w/sand  35 78 22 21 17 4  Dense gray SILT (ML) w/sand  To Dense gray SILT (ML) w/sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEVATIO  | ОЕРТН,             | SYN           | SAN                      |                                                                                          | MDARD F | FRCENT | NO. 20                                  | JRY UNIT   | TURAL CONTE      | J GINDI. | LASTIC | ASTICITY         | }              |                |       | ATED-<br>MPRES | UNDR    | AINE |
| 18.5" Shell Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 68.    |                    | 0.4.0         |                          |                                                                                          | STAN    | Z L    | +                                       |            | Ž                |          |        |                  | 0.             | .5 1.          | .0 1. | .5 2           | .0 2    | .5   |
| -reddish brown w/shell w/ferrous nodules and ferrous stains 2'-4'  Medium dense brown SANDY seams  Medium dense brown SILTY SAND (SM) -loose 10.5'-12'  51.7 Very stiff reddish brown and gray LEAN CLAY (CL) w/sand, ferrous nodules and ferrous stains -20 —w/sertical sand seams -20'-28'  Dense gray SILT (ML) w/sand  31 76 23 -36.7 Dense gray SILT (ML) w/sand  32 22  11 11 56  15 44  6 5  11 11 56  11 11 56  12 12 13 13 13 13 13 13 13 13 13 13 13 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | J                  | <b>FF</b>     |                          | L                                                                                        | -{      |        |                                         |            | 8                | 33       | 16     | 17               |                |                |       |                | 20      |      |
| Section   Sect | 64       | 7                  |               |                          | -reddish brown w/shell                                                                   |         |        |                                         |            | 22               |          |        |                  |                |                |       |                |         |      |
| SILT (ML) w/sond and clay seems  Medium dense brown SILTY SAND (SM) - dense 8.5'-10' - loose 10.5'-12'  13 13 15 16 17 18 18 19 19 19 10 10 10 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04.      | - 5-               |               | X                        | ferrous stains 2'-4'                                                                     | $\iint$ | 5 5    |                                         |            | 11               |          |        |                  |                |                |       |                |         |      |
| SAND (SM) -dense 8.5'-10' -loose 10.5'-12'    15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 62.    | 2-                 |               | $\langle \gamma \rangle$ | SILT (ML) w/sand and clay                                                                | Н       |        |                                         |            |                  |          |        |                  |                |                |       |                |         |      |
| - loose 10.5'-12'  - loose 14.5'-16'  Very stiff reddish brown and groy LEAN CLAY (CL) w/sand, ferrous nodules and ferrous stains - w/vertical sand seams  20'-28'  - medium stiff to stiff  21  22  23  24  31  7  Dense gray SILT (ML) w/sand  35  78  22  21  7  Dense gray SILT (ML) w/sand  35  7  To lie  13  13  14  25  20  20  21  21  20  21  21  22  23  24  24  27  28  29  20  20  21  21  20  20  21  21  20  21  21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |               | Δ<br>Δ                   | SAND (SM)                                                                                | 1       | 5 4    | 4                                       |            | 6                |          |        |                  |                |                |       |                |         |      |
| - 15 - 15 - 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | - 10-              |               |                          |                                                                                          | 3       | 1      |                                         |            | 8                |          |        |                  |                |                |       |                |         |      |
| - 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    |               | XI                       |                                                                                          |         | 6      |                                         |            | 12               |          |        |                  |                |                |       |                |         |      |
| 151.7    Very stiff reddish brown and gray LEAN CLAY (CL) w/sand, ferrous nodules and ferrous stains -w/vertical sand seams 20'-28'   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                    |               | X                        | 44.51.401                                                                                | 1       | 3      |                                         |            | 13               |          |        |                  |                |                |       |                |         |      |
| Very stiff reddish brown and gray LEAN CLAY (CL) w/sand, ferrous nodules and ferrous stains -w/vertical sand seams 20'-28'  - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | - 15-              |               |                          | -loose 14.5'-16'                                                                         |         | 7      |                                         |            | 16               |          |        |                  |                |                |       |                |         |      |
| w/sand, ferrous nodules and ferrous stains -w/vertical sand seams 20'-28'  - 25  - medium stiff to stiff 26'-30'  Dense gray SILT (ML) w/sand  - very dense reddish brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 51.    | 7                  |               |                          |                                                                                          | 1       | 3      |                                         |            | 20               |          |        |                  |                |                |       |                |         |      |
| 20'-28'  - medium stiff to stiff 26'-30'  Dense gray SILT (ML) w/sand  31 76 23  - very dense reddish brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | - 20-              |               |                          | w/sand, ferrous nodules<br>and ferrous stains                                            |         | 82     | 2                                       | 113        | 19               | 43       | 18     | 25               |                |                | _0    |                | Δ_      |      |
| - 25medium stiff to stiff 26'-30'  Dense gray SILT (ML) w/sand  31 76 23  Dense gray SILT (ML) w/sand  35 78 22 21 17 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                    |               |                          |                                                                                          |         |        | *************************************** |            | 20               |          |        |                  |                | 0              | Δ     |                |         |      |
| -medium stiff to stiff 26'-30'  21  22  ACC  31  76  23  Dense gray SILT (ML) w/sand  35  78  22  21  17  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |               |                          |                                                                                          |         |        |                                         |            | 21               |          |        |                  |                |                |       |                | ا<br>۵۵ |      |
| 26'-30'  21  22  AO  31 76  23  Dense gray SILT (ML) w/sand  35 78  22 21 17 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | - 25-              |               |                          | -medium stiff to stiff                                                                   |         | 93     | 3                                       |            | 24               | 43       | 20     | 23               |                | 0              |       | Δ              |         |      |
| 36.7 Dense gray SILT (ML) w/sand 35 78 22 21 17 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                    |               |                          |                                                                                          |         |        |                                         |            | 21               |          |        |                  |                |                |       |                |         |      |
| 36.7 Dense gray SILT (ML) w/sand 35 78 22 21 17 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                    |               |                          |                                                                                          |         |        |                                         |            |                  |          |        |                  |                |                |       |                |         |      |
| Dense gray SILT (ML) w/sand  35 78 22 21 17 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | - 30-              |               |                          |                                                                                          |         |        |                                         |            | 22               |          |        |                  | Δ              | <del>)  </del> |       |                |         | i    |
| -very dense reddish brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 36.7   | <b>'</b>           |               | \<br>                    | Dense gray SILT (ML) w/sand                                                              | 3       | 76     | 6                                       |            | 23               |          |        |                  |                |                |       |                |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 33.7   | / <del>-</del> 35+ |               |                          | -very dense reddish brown<br>34.5'-36'                                                   | 35      | 78     | 3                                       |            | 22               | 21       | 17     | 4                |                |                |       |                |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>*</u> | : FREE<br>: WATE   | WATE<br>R DEI | -R<br>PT⊢                | 1st ENCOUNTERED AT 32.0 FT. DURING<br>AT 18.4 FT., HOLE OPEN TO 50.0 FT<br>Geotest Engin | ON I    | 07-2   | 4                                       | -13.       |                  | ) MIN    |        |                  |                |                | ure / | 4-5c           |         | -    |

|                                         |                                              |                                                            | LOG OF BOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RING N                                    | 10.                              | НМІ              | B-1                            | (H            |            | — 1 F      | P) ( | Cont   | 'd                                     |      |                 |
|-----------------------------------------|----------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|------------------|--------------------------------|---------------|------------|------------|------|--------|----------------------------------------|------|-----------------|
| PRO                                     | DJECT : F                                    | TY2012 Lift Station I<br>Hardy Temp, Hunterw               | Renewal/Replace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ement -                                   | - No                             | rthbr            | ook.                           |               |            |            |      | ). : · |                                        | 194  | 901             |
| LOC                                     | V<br>1 : NOITAC                              | VBS No. R-000267-<br>N 13841099.04. F 3                    | -0111—3; City o<br>047437.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Pearl                                  | and,                             | Texo             | )S                             |               | COM        | IPLE       | TION | DEP    | TH :                                   | : 70 | .0 FT           |
| SUF                                     | RFACE ELE                                    | Harvest Moon LS; Se<br>VATION : 68.74 FT.                  | e Plan of Barir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ngs (Fig                                  | ure                              | 2.4)             |                                |               | DATE       | Ε:         | 06-: | 24-1   | 3                                      |      |                 |
|                                         |                                              | SAMPLER : Shelby                                           | Tube/Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOOP                                      | ទ                                | F,               | Ę                              |               | %          | 24         | UNDI | RAINEC | SHE                                    |      | RENGT           |
| FEET                                    | SL EET                                       |                                                            | 0 TO 32.0 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VETRA                                     | ASSIN                            | WEIGH            | STUR                           | Т, %          | LIMIT, %   | INDEX,     | ] -  | AND P  |                                        |      | ER<br>RESSION   |
| ELEVATION, FEET                         | DEPTH, FEET SYMBOL SAMPLES                   | WET ROTARY : 32.                                           | 0 TO 70.0 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D PE                                      | PERCENT PASSING<br>NO. 200 SIEVE | DRY UNIT WEIGHT, | NTENT                          | LIQUID LIMIT, | )<br> <br> |            | -    |        |                                        |      | INDRAIN<br>IION |
| ELEVA                                   | 0EP                                          | DESCRIPTION C                                              | OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STANDARD PENETRATION TEST, BLOWS PER FOOT | PERC.                            | DRY              | NATURAL MOISTURE<br>CONTENT, % | LIQUI         | PLASTIC    | PLASTICITY | Δт   | ORVANI | Ε                                      |      |                 |
| - 33.7-                                 | - 35 III X                                   | Dense gray SILT                                            | (ML) w/sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                                        |                                  |                  | 20                             |               |            |            | 0.   | 5 1.0  | 1.5                                    | 2.0  | 2.5             |
| - 32.7-                                 |                                              | Medium stiff to s                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0'                                      |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
|                                         |                                              | reddish brown a<br>SILTY CLAY (CL-                         | ·ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 91                               |                  | 22                             | 25            | 19         | 6          | ΔΦ   |        |                                        |      |                 |
|                                         |                                              | -very stiff 38.5'-                                         | ·40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                        |                                  |                  | 23                             |               |            |            |      |        |                                        |      |                 |
| - 28.7-                                 | 40                                           | Dense reddish bro                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
| -                                       | <u>                                     </u> | gray SANDY SILT<br>w/clay seams                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                        |                                  |                  | 23                             |               |            |            |      |        |                                        |      |                 |
|                                         |                                              | -medium dense                                              | 42.5'-44'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                        | 68                               |                  | 23                             |               |            |            |      |        |                                        |      |                 |
|                                         | - 45-11 V                                    |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | _                              |               |            |            |      |        |                                        |      |                 |
| - 22.7                                  |                                              | Hard reddish brov                                          | up and aray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                        |                                  |                  | 22                             |               |            |            |      |        |                                        |      |                 |
| -                                       |                                              | FAT CLAY (CH) v                                            | v/ferrous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 100                              | 104              | 23                             | 65            | 25         | 40         |      |        |                                        |      | 0               |
|                                         |                                              | nodules                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
| -                                       | - 50-                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | 25                             |               |            |            |      | _      | _                                      | -    |                 |
|                                         |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | 28                             |               |            |            |      |        |                                        |      |                 |
|                                         |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
| -                                       |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | 29                             |               |            |            |      |        |                                        |      |                 |
| -                                       | 55-                                          |                                                            | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                  |                  | 24                             |               |            |            |      | -      | -                                      |      | 0               |
| -                                       |                                              | -very stiff to har                                         | 0 26.–28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
| *************************************** |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 100                              | 98               | 28                             | 76            | 28         | 48         |      |        |                                        | -    | 0               |
| -                                       | 60-                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | 25                             |               |            |            |      |        |                                        |      |                 |
|                                         |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
| 6.7                                     |                                              | Hard reddish brow                                          | n I FAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                  |                  | 29                             |               |            |            |      |        |                                        |      | 0               |
|                                         |                                              | CLAY (CL) w/san                                            | id and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                  | 116              | 16                             |               |            |            |      |        |                                        |      |                 |
|                                         | 65-                                          | calcareous noduli                                          | <b>c</b> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                  |                  |                                |               |            |            |      |        |                                        |      |                 |
| -                                       |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | 16                             |               |            |            |      |        |                                        | !    |                 |
| -                                       |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  | 18                             |               |            |            |      |        |                                        |      | 0               |
|                                         |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  |                                |               |            |            |      |        |                                        | '    | _               |
| -1.3                                    | 70                                           |                                                            | MATERIAL MAT | _                                         |                                  |                  | 19                             |               |            | -          |      |        |                                        | ىل   | لم              |
| DEBIL                                   | TO WATER                                     | IN BORING :                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                  |                                |               |            |            |      |        | ************************************** |      |                 |
| 츔 : 년                                   | FREE WATER                                   | in Boring :<br>1st ENCOUNTERED AT<br>H AT 18.4 FT., HOLE O | 32.0 FT. DURING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRILLING                                  | ; AF<br>-24-                     | TER<br>-13.      | 20.0                           | MIN           | . AT       | 20.6       | FT.  |        |                                        |      |                 |
|                                         | ······································       | <i>G</i>                                                   | eotest Engr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ineeri                                    | ng,                              | In               | c                              |               |            |            |      |        |                                        |      |                 |

| PF                           | ROJEC       | T :  | LOG OF BORING FY2012 Lift Station Renewal/Replacement                                                                                             |                                              | - No                             | rthbi                | rook,                          |                 | PRO              | JEC <sup>-</sup>    | Γ NO.                               | : 114                                        | 1019                                     | 4901                             |
|------------------------------|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------|--------------------------------|-----------------|------------------|---------------------|-------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------|
| LC                           | CATIO       | N :  | Hardy Temp, Hunterwood, Harvest Moon<br>WBS No. R-000267-0111-3; City of P<br>N 13841228.95, E 3046737.51<br>Harvest Moon Ln; See Plan of Borings | earlo                                        | and,                             | Tex                  | s<br>Os                        |                 | СОМ              | IPLE.               | TION D                              | EPTH                                         | : 3                                      | 0.0 F                            |
| SU                           | JRFAC       | E EL | EVATION: 72.98 FT.                                                                                                                                | (, , ,                                       |                                  |                      | ,                              |                 | DATE             | :                   | 05-29                               | -13                                          |                                          |                                  |
| r<br>se elevation, feet<br>o | ревтн, FEET |      | SAMPLER: Shelby Tube/Split Spoon  DRY AUGER: 0.0 TO 24.0 FT.  WET ROTARY: 24.0 TO 30.0 FT.  DESCRIPTION OF MATERIAL                               | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT | PERCENT PASSING<br>NO. 200 SIEVE | DRY UNIT WEIGHT, PCF | NATURAL MOISTURE<br>CONTENT, % | רוסחום רואוז, % | PLASTIC LIMIT, % | PLASTICITY INDEX, % | UNDRAI O HANI O UNC TRIA A TORN 0.5 | T<br>D PENE<br>ONFINEI<br>ONSOLII<br>XIAL CO | SF<br>TROME<br>D COM<br>DATED-<br>OMPRES | ter<br>Pressio<br>-Undra<br>Sion |
| - 73.0<br>- 72.5             |             | 0.00 | √5.5" Concrete                                                                                                                                    |                                              |                                  |                      |                                |                 |                  |                     |                                     |                                              |                                          |                                  |
|                              |             |      | Hard gray FAT CLAY (CH) w/ferrous stains and ferrous nodules -very stiff 4'-6'                                                                    |                                              |                                  |                      | 18<br>17                       |                 |                  |                     |                                     |                                              |                                          | 0                                |
|                              | - 5-        |      | -very stiff to hard 6'-8'                                                                                                                         |                                              | 90                               | 106                  | 21                             | 76              | 28               | 48                  |                                     |                                              |                                          | Δ                                |
| - 65.0 <sup>.</sup>          | - 10-       |      | Very stiff to hard brown<br>and gray LEAN CLAY (CL)<br>w/sand                                                                                     |                                              | 76                               | 120                  | 23<br>14                       | 46              | 19               | 27                  |                                     | 0                                            | D                                        | 4                                |
|                              |             |      | —hard 10'—12'                                                                                                                                     |                                              |                                  |                      | 11                             |                 |                  |                     |                                     |                                              |                                          | 0                                |
| - 57.0-                      | - 15-       |      | -very stiff brown w/silt<br>seams 14'-16'                                                                                                         |                                              |                                  |                      | 15<br>20                       |                 |                  |                     |                                     |                                              |                                          | 0                                |
|                              |             |      | Medium stiff reddish brown<br>and gray SANDY LEAN CLAY<br>(CL)                                                                                    |                                              | 63                               | 108                  | 20                             | 26              | 18               | 8                   |                                     |                                              |                                          |                                  |
|                              | - 20-       |      |                                                                                                                                                   | 13                                           | 64                               |                      | 20                             |                 |                  |                     |                                     |                                              |                                          |                                  |
|                              | - 25-       |      | -medium stiff to stiff<br>23'-25'                                                                                                                 |                                              |                                  |                      | 21                             |                 |                  |                     | ΔΦ.                                 |                                              |                                          |                                  |
| 430                          | 30          |      | -very stiff to hord 28'-30'                                                                                                                       |                                              |                                  |                      | 18                             |                 |                  |                     |                                     |                                              |                                          | 0                                |
| 43.0-                        | - 35-       |      |                                                                                                                                                   |                                              |                                  |                      |                                |                 |                  |                     |                                     |                                              |                                          |                                  |

| PROJECT   Fr2012 Lift   Station   Renewol/Repidecement   Northbrook, Hordy Temp, Munterwead   Interest Moon Lift   Stations   MSS No. R-000267-0111-3; City of Peorland, Texas   COMPLETION DEPTH   30.0 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |                                             | LOG OF BORIN                                       | IG N           | 10.             | НМ   | B-3             | 3     |                                         |        |               |                   |                  |                |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|---------------------------------------------|----------------------------------------------------|----------------|-----------------|------|-----------------|-------|-----------------------------------------|--------|---------------|-------------------|------------------|----------------|----------|
| West No. R0.00267 -0.111-3; City of Peorland, Texas   COMPLETION DEPTH : 30.0 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJEC  | F           | Y2012 Lift Station R<br>lardy Temp, Hunterw | Renewal/Replaceme                                  | ent -          | - No            | rthb | rook,<br>s      |       | PRO                                     | JEC1   | NO. :         | 114               | 0194             | 901            |          |
| SAMPLER : Shelby Tube/Spilk Spoon   DRY AUGER : 0.0 TO 30.0 FT.   DESCRIPTION OF MATERIAL   DE | LOCATIO | V<br>1 : NC | VBS No. R-000267-<br>L 13840824.01. F 30    | 0111–3; City of I<br>046650.89                     | Pearl          | and,            | Tex  | os              |       | COM                                     | IPLE   | TION DE       | PTH               | : 30             | .0 F           | Τ.       |
| 77: Concrete over 2" Brown Sand  Very stiff to hard gray FAT CLAY (CH) w/sand seams and ferrous stains -w/ferrous nadules 2'-B' -w/colcareous nadules 4'-B' -stiff to very stiff 6'-B'  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SURFAC  | E ELE/      | larvest Moon Ln; See<br>/ATION : 72.90 FT.  | e Plan of Borings                                  | (Fig           | ure             | 2.5) | ·               |       | DATE                                    | Ξ:     | 05-29-        | -13               |                  |                |          |
| 7**Concrete over 2" Brown Sand  Very stiff to hard gray FAT CLAY (CH) w/sand seams and ferrous stains -w/ferrous nodules 2'-B' -w/colcareous nodules 4'-B' -stiff to very stiff 6'-B'  Very stiff to hard gray and brown FAT CLAY (CH) w/sand, calcareous and ferrous nodules  -very stiff 14'-16'  -very stiff 14'-16'  -very stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWAITER IN BORING: NO GROUNDWAITER ENCOUNTERED DURING DRILLING, NO GROUNDWAITERED DURING DRILLING,                                                                                                                                      | ь       |             | SAMPLER : Shelby T                          | ube/Split Spoon                                    | YATION<br>FOOT | ENG<br>ENG      | Ħ,   | JRE             |       |                                         |        |               | TS                | SF               |                | ſΗ,      |
| 7**Concrete over 2" Brown Sand  Very stiff to hard gray FAT CLAY (CH) w/sand seams and ferrous stains -w/ferrous nodules 2'-B' -w/colcareous nodules 4'-B' -stiff to very stiff 6'-B'  Very stiff to hard gray and brown FAT CLAY (CH) w/sand, calcareous and ferrous nodules  -very stiff 14'-16'  -very stiff 14'-16'  -very stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWAITER IN BORING: NO GROUNDWAITER ENCOUNTERED DURING DRILLING, NO GROUNDWAITERED DURING DRILLING,                                                                                                                                      | Z, FEET | BOL<br>PLES |                                             |                                                    | ENETA<br>S PER | PASS<br>SIEV    | WEIG | AOISTL<br>NT, % |       | LIMIT,                                  | INDE   | _             |                   |                  |                | N        |
| 77: Concrete over 2" Brown Sand  Very stiff to hard gray FAT CLAY (CH) w/sand seams and ferrous stains -w/ferrous nodules 2'-B' -w/colcareous nodules 4'-B' -stiff to very stiff 6'-B'  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ертн,   | SYM         | WEI ROIARY:                                 | - 10 F1.                                           | ARD P          | SCENT<br>D. 200 | NO.  | JRAL A          | n div | STIC                                    | TICITY | UNCO<br>TRIAX | NSOLID<br>IAL COI | ATED-U<br>MPRESS | JNDRAI<br>SION | NEC      |
| Very stiff to hard gray FAT CLAY (CH) w/sand seams and ferrous stains  - w/ferrous nodules 2'-8' - wery stiff to hard gray and brown FAT CLAY (CH)  - stiff to very stiff 6'-8'  Very stiff to hard gray and brown FAT CLAY (CH)  - very stiff 14'-16'  - very stiff 14'-16'  - very stiff 18'-20'  - very stiff gray SANDY LEAN  CLAY (CL) w/ferrous stains - stiff 18'-20'  - 20  Very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and gray FAT CLAY (CH)  - very stiff reddish brown and calcareous nodules  - hard 28'-30'  DEPTH TO WATER IN BORING:  NO GROUNDWAIER ENCOUNTERED DURING DRILLING,  HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             | DESCRIPTION OF                              | F MATERIAL                                         | STAND<br>TEST, | PE              | Q.   | NATL            | 017   | PU                                      | PLAS   |               |                   | .5 2.0           | 2.5            |          |
| Very stiff to hard gray sams and ferrous stains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.2    | 444         |                                             | 2" Brown                                           |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| Ferrous sidins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |             | Very stiff to hard                          | gray FAT                                           |                |                 |      | 16              |       |                                         |        |               |                   |                  | `              |          |
| -very stiff 4'-6' -w/calcareous nodules 4'-8' -stiff to very stiff 6'-8'  Very stiff to hard groy and brown FAT CLAY (CH) w/sand, colcareous and ferrous nodules  -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and colcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |             | ferrous stains                              |                                                    |                |                 |      | 21              |       |                                         |        |               | 0                 |                  |                |          |
| -stiff to very stiff 6'-8'  Very stiff to hard gray and brown FAT CLAY (CH) w/sand, colcareous and ferrous nodules  -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 3.0. 5T. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 5-    |             | -very stiff 4'-6'                           |                                                    |                |                 |      | 23              |       |                                         |        |               | $\frac{1}{1}$     |                  |                |          |
| Very stiff to hord gray and brown FAT CLAY (CH) w/sand, calcareous and ferrous nodules  -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 3.00 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |             | -stiff to very stiff                        | f 6'-8'                                            |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| brown FAT CLAY (CH) w/sand, calcareous and ferrous nodules  -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWAITER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 3.00 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64.9    |             | Very stiff to hard                          | aray and                                           |                | 91              | 101  | 24              | 71    | 26                                      | 45     | <b>3</b>      | ф                 |                  |                |          |
| ferrous nodules  -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and colcareous nodules -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 10-   |             | brown FAT CLAY                              | (CH)                                               |                |                 |      | 24              |       |                                         |        |               |                   |                  |                |          |
| -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL.) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| -very stiff 14'-16'  Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |             |                                             |                                                    |                |                 |      | 22              |       |                                         |        |               |                   |                  | ·              |          |
| Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains —stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules —hard 28'-30'  DEPTH TO WATER IN BORING: MO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             | -very stiff 14'-16                          | 3'                                                 |                |                 |      | 17              |       |                                         |        |               |                   |                  |                |          |
| Very stiff gray SANDY LEAN CLAY (CL) w/ferrous stains -stiff 18'-20'  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  DEPTH TO WATER IN BORNG: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       |             |                                             |                                                    |                | 80              | 110  | 21              | 51    | 19                                      | 32     |               |                   |                  |                |          |
| - stiff 18'-20'  49.9  Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  - hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.9    |             | Very stiff gray SAN                         | NDY LEAN                                           |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  -hard 28'-30'  42.9-30  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             | -stiff 18'-20'                              | ous stants                                         |                |                 |      | 17              |       |                                         |        |               | $\uparrow$        |                  |                |          |
| Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  - hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 20-   |             |                                             |                                                    |                | 68              |      | 15              | 28    | 15                                      | 13     | <b>—</b>      |                   |                  |                |          |
| Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  - hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| Very stiff reddish brown and gray FAT CLAY (CH) w/sand seams and calcareous nodules  - hard 28'-30'  DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.9    |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| DEPTH TO WATER IN BORING : NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 25-   |             | w/sand seams ar                             | nd                                                 |                |                 |      | 19              |       |                                         |        |               |                   | 7                |                |          |
| DEPTH TO WATER IN BORING : NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| DEPTH TO WATER IN BORING :  NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |             | -hard 28'-30'                               |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| DEPTH TO WATER IN BORING :  NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42.9 30 |             |                                             | - AMAGANIS AND |                |                 |      | 20              |       |                                         |        |               |                   | $\perp$          |                |          |
| DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |                                             |                                                    |                |                 |      |                 |       | *************************************** |        |               |                   |                  | -              |          |
| DEPTH TO WATER IN BORING: NO GROUNDWATER ENCOUNTERED DURING DRILLING. HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |                                             |                                                    |                |                 |      |                 |       |                                         |        |               |                   |                  |                |          |
| NO GROUNDWATER ENCOUNTERED DURING DRILLING.<br>HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 35-   |             |                                             |                                                    |                |                 |      |                 |       |                                         | ŀ      |               |                   |                  | L_             | $\dashv$ |
| HOLE OPEN TO 30.0 FT. AT END OF DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |                                             | IC DOLLANO                                         |                | 1               | 1.   |                 | 1     | 1_                                      |        |               |                   |                  |                | 1        |
| Geotest Engineering, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             | 30.0 FT. AT END OF                          | DRILLING.                                          | anni           | n e             | Iω   | o -             |       |                                         |        |               |                   |                  |                |          |

| LC                            | ROJEC                 | )N :   | FY2012 Lift Station Renewal/Replaceme<br>Hardy Temp, Hunterwood, Harvest Moon<br>WBS No. R-000267-0111-3; City of F<br>N 13840512.58, E 3046175.11<br>Honeywood Trail; See Plan of Borings (                                          | nt -<br>Lift<br>earl                         | - No<br>: Sto | rthbi<br>ition:<br>Text | ook,                           |                 | COM                  | 1PLE                | T NO. : 1                                                                    | ГН : 3                                                    |                                          |
|-------------------------------|-----------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|-------------------------|--------------------------------|-----------------|----------------------|---------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| 20.5 ELEVATION, FEET          | DEPTH, FEET           | SYMBOL | SAMPLER: Shelby Tube/Split Spoon  BY AUGER: 0.0 TO 24.0 FT.  WET ROTARY: 24.0 TO 30.0 FT.  DESCRIPTION OF MATERIAL                                                                                                                    | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT |               | T                       | NATURAL MOISTURE<br>CONTENT, % | LIQUID LIMIT, % | PLASTIC LIMIT, % ALV | PLASTICITY INDEX, % | O5-29-1  UNDRAINED  O HAND PE  UNCONFI  UNCONSI TRIAXIAL  △ TORVANE  0.5 1.0 | SHEAR<br>TSF<br>ENETROME<br>NED CON<br>DLIDATED<br>COMPRE | ETER<br>IPRESSION<br>UNDRAINE<br>SSION   |
| - 75.6                        | - 5                   |        | Stiff to very stiff dark gray FAT CLAY (CH) w/sand, ferrous nodules and ferrous stains -very stiff 2'-8' -gray and brown 2'-12' -w/calcareous nodules 4'-12' -hard 8'-12'                                                             |                                              | 81            | 114                     | 23<br>19<br>17<br>16           | 63              | 24                   | 39                  | Φ<br>2                                                                       |                                                           |                                          |
| - 64.2-<br>- 60.2-            | - 15-                 |        | Very stiff to hard gray and reddish brown FAT CLAY (CH) w/sand seams and calcareous and ferrous nodules —slickensided 12'—14' —hard 14'—16'  Very stiff gray and reddish brown LEAN CLAY (CL) w/calcareous nadules and ferrous stains |                                              |               | 114                     | 18<br>18<br>20<br>20           | 68<br>45        | 26<br>19             | 42<br>26            | 40                                                                           |                                                           | <ul><li>ΩΔ</li><li>Δ</li><li>Δ</li></ul> |
| - 53.2-<br>- 48.2-<br>- 46.2- | - 25-                 |        | Loose reddish brown SILT (ML) w/clay stone  Hard reddish brown FAT CLAY (CH) w/silt seams and ferrous stains                                                                                                                          | 9                                            | 91            |                         | 26                             |                 |                      |                     |                                                                              |                                                           | 0                                        |
| DEPT<br>V                     | - 35-<br>H TO<br>FREF | WATE   | R IN BORING : R 1st ENCOUNTERED AT 24.0 FT. DURING DRI O 30.0 FT. AT END OF DRILLING.                                                                                                                                                 | LLING                                        | G; AF         | TER                     | 10.0                           | MIN             | . AT                 | 19.5                | 5 FT.                                                                        |                                                           |                                          |

| PRO            | DJECT :       | FY2012 Lift Station Renewal/Replaceme<br>Hardy Temp, Hunterwood, Harvest Moor                                                                        | <br>nt -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rthbr                | ook,                           |                 | PRO              | JECT                | NO. :         | 114                               | 0194                             | 1901                           |
|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|-----------------|------------------|---------------------|---------------|-----------------------------------|----------------------------------|--------------------------------|
|                |               | WBS No. R-000267-0111-3; City of F<br>N 13840507.84, E 3045799.83<br>Honeywood Trail; See Plan of Borings<br>EVATION: 74.61 FT.                      | Pearle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tex                  | s                              |                 |                  |                     | TION D        |                                   | : 30                             | ).O F                          |
| -9<br>-9<br>-9 | DEP.          | SAMPLER: Shelby Tube/Split Spoon DRY AUGER: 0.0 TO 24.0 FT. WET ROTARY: 24.0 TO 30.0 FT.  DESCRIPTION OF MATERIAL                                    | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PERCENT PASSING<br>NO. 200 SIEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRY UNIT WEIGHT, PCF | NATURAL MOISTURE<br>CONTENT, % | LIQUID LIMIT, % | PLASTIC LIMIT, % | PLASTICITY INDEX, % | $\Delta$ TORV | TS PENET ONFINED ONSOLID KIAL COI | FROMET<br>COMF<br>ATED-<br>MPRES | TER<br>PRESSI<br>UNDRA<br>SION |
| 73.9-          | 0 0 0 0 0 0 0 | 6" Concrete over 2" Brown Sand and Clay Mix  Hard dark gray FAT CLAY (CH) w/calcareous and ferrous nodules and ferrous stains —gray and brown 4'—14' | A CONTRACTOR OF THE PARTY OF TH | The designation of the state of |                      | 16<br>16                       |                 |                  |                     |               |                                   |                                  | 0                              |
|                | - 10-         |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115                  | 15<br>14<br>18                 | 53              | 20               | 33                  |               |                                   |                                  | 0 0 0                          |
|                |               | -very stiff reddish brown<br>14'-16'                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 17                             |                 |                  |                     |               |                                   |                                  | Ø Ø                            |
| 58.6-<br>56.6- | - 15-         | Medium stiff to stiff gray and reddish brown LEAN CLAY (CL)  Medium dense reddish brown                                                              | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106                  | 22                             | 36              | 17               | 19                  | ΔΦΟ           | 0                                 |                                  |                                |
|                | - 20-         | SANDY SILT (ML) w/clay seams                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 20<br>23<br>26                 |                 |                  |                     |               |                                   |                                  |                                |
| 46.6-          | - 25-         | Stiff to very stiff reddish                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Account or many contract of the contract of th |                      | _                              |                 |                  |                     |               |                                   |                                  |                                |
| 44.6-          | 30            | brown FAT CLAY (CH)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 24                             |                 |                  |                     |               |                                   |                                  |                                |

| PROJI           | ECT :                                   | FY2012 Lift Station Renewal/Replacementary Temp, Hunterwood, Harvest Moo                                                                                                                                                                                               | ent -<br>n Lift                              | - No<br>t Sto | rthb                    | rook,<br>s           |                | PRO              | JEC.                | T NO.              | : 114                             | 10194                                                  | 901                          |
|-----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|-------------------------|----------------------|----------------|------------------|---------------------|--------------------|-----------------------------------|--------------------------------------------------------|------------------------------|
| LOCAT<br>SURF   | TION :                                  | WBS No. R-000267-0111-3; City of N 13840420.64, E 3045450.61 Dairy Ashford Rd; See Plan of Borings EVATION: 75.05 FT.                                                                                                                                                  | Pearl                                        | and,          | Tex                     | os                   |                |                  |                     | TION 0             |                                   | : 30                                                   | .0 1                         |
| ELEVATION, FEET | SYMBOL                                  | SAMPLER: Shelby Tube/Split Spoon DRY AUGER: 0.0 TO 22.0 FT. WET ROTARY: 22.0 TO 30.0 FT.  DESCRIPTION OF MATERIAL                                                                                                                                                      | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT | <del></del>   | DRY UNIT WEIGHT,<br>PCF |                      | ПООІР ГІМІТ, % | PLASTIC LIMIT, % | PLASTICITY INDEX, % | O HAN UNC UNC TRIA | T' D PENE ONFINEI ONSOLIE XIAL CO | HEAR ST<br>SF<br>TROMETO<br>COMPI<br>DATED-L<br>MPRESS | ER<br>RESSI<br>JNDR/<br>SION |
| 67.1            | 5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | 7.5" Concrete  FILL: brown and gray sand w/gravel -w/calcareous and ferrous nodules 1'-10' -very stiff gray sandy lean clay 4'-6' -medium stiff to stiff yellow and gray sandy lean clay 6'-8'  Stiff to very stiff gray and reddish brown FAT CLAY (CH) w/sand seams, |                                              | 88            | 106                     | 20<br>18<br>25<br>19 | 67             | 25               | 42                  | 04                 | 04                                |                                                        | .0                           |
| 59.1            | 5-1                                     | calcareous nodules and ferrous stains -very stiff 10'-12'  -stiff to hard, slickensided 14'-16'  Brown and gray CLAYEY SAND (SC)                                                                                                                                       |                                              | 96            | 96                      | 23<br>21<br>28<br>30 | 58             | 23               | 35                  |                    | С                                 | 0                                                      | Δ                            |
| 57.1            |                                         | Stiff to hard reddish brown LEAN CLAY (CL) w/calcareous nodules and ferrous stains                                                                                                                                                                                     |                                              | 98            | 117                     | 19                   | 29             | 19               | 10                  |                    |                                   |                                                        | Ω                            |
| - 2             | 5-1117                                  | Medium dense to dense reddish brown SILTY SAND (SM)  -w/clayey silt 28.5'-30'                                                                                                                                                                                          | 31                                           | 46            |                         | 23                   |                |                  |                     |                    |                                   |                                                        |                              |
| 45.1 - 36       |                                         |                                                                                                                                                                                                                                                                        | 17                                           |               |                         | 16                   |                |                  |                     |                    |                                   |                                                        |                              |

| Γ   | *************   |             |        |          | LOG OF BORIN                                                                                                      | 1G 1                                         | ۷٥.                              | НМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B-7                         | 7 (H            | нмв              | -71                 | P)                                    |                                         |                    |              |      |
|-----|-----------------|-------------|--------|----------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|------------------|---------------------|---------------------------------------|-----------------------------------------|--------------------|--------------|------|
|     | PR              | OJEC        | T :    | H        | Y2012 Lift Station Renewal/Replacem                                                                               | ent -                                        | - No                             | orthb<br>ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | roak,                       |                 |                  |                     | T NO. :                               | 114                                     | 1019               | 490          | 1    |
|     | LOC             | CATIO       | N :    | V        | VBS No. R-000267-0111-3; City of 13840919.65, E 3045429.02                                                        | Pearl                                        | ond,                             | Tex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | as                          |                 | COM              | 1PLE                | TION DE                               | PTH                                     | : 3                | 0.0          | FT.  |
|     | SU              | RFAC        | E EL   | D<br>EV  | Dairy Ashford Rd; See Plan of Borings<br>/ATION : 73.12 FT.                                                       | (Fig                                         | jure                             | 2.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                 | DAT              | Ε:                  | 05-30-                                | -13                                     |                    |              |      |
|     | ELEVATION, FEET | ОЕРТН, FEET | SYMBOL | SAMPLES  | SAMPLER: Shelby Tube/Split Spoon DRY AUGER: 0.0 TO 20.0 FT. WET ROTARY: 20.0 TO 30.0 FT.  DESCRIPTION OF MATERIAL | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT | PERCENT PASSING<br>NO. 200 SIEVE | DRY UNIT WEIGHT,<br>PCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NATURAL MOISTURE CONTENT, % | רוסחום רואוז, % | PLASTIC LIMIT, % | PLASTICITY INDEX, % | UNDRAIN  HAND UNCO UNCO TRIAXI  TORVA | T:<br>PENE<br>NFINE(<br>NSOLI(<br>AL CO | SF<br>TROME<br>COM | TER<br>PRESS | SION |
| F   | 73.1-<br>72.5-  | - 0-        | 0.0.0  |          | 7.5" Concrete                                                                                                     | C 20분                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           |                 |                  |                     | 0.5                                   | 1.0 1                                   | .5 2               | .0 2         | 5    |
|     | , 2.0           |             |        |          | Very stiff yellow, reddish brown and gray SANDY LEAN CLAY (CL) —gray 2'-4' —w/ferrous nodules 2'-8'               |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                          |                 |                  |                     |                                       |                                         | C                  |              |      |
|     |                 | - 5-        |        |          | -very stiff to hard 4'-8'                                                                                         |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                          |                 |                  |                     |                                       |                                         |                    | 0            | T    |
|     |                 |             |        |          | -stiff to very stiff 8'-10' -very sandy clay 8'-12'                                                               |                                              | 70                               | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                          | 32              | 15               | 17                  |                                       |                                         | <u> </u>           | 0            |      |
|     | ļ               | - 10-       |        |          | -stiff w/clayey sand layer                                                                                        |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                          |                 |                  |                     |                                       | 4                                       | <u></u>            |              |      |
|     |                 |             |        |          | 10'-12'                                                                                                           |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                          |                 |                  |                     |                                       |                                         |                    |              |      |
| -   | 61.1            |             |        | X        | Medium dense gray and<br>reddish brown SILTY SAND<br>(SM)                                                         | 23                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                          |                 |                  |                     | 04                                    |                                         |                    |              |      |
|     |                 | 15-         |        | X        | -dense 16'-18'<br>-gray and brown 16'-23'                                                                         | 27                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                          |                 |                  |                     |                                       |                                         |                    |              |      |
|     | -               |             |        |          | -very dense 18'-20'                                                                                               | 41                                           | 29                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                          |                 |                  |                     |                                       |                                         |                    |              |      |
|     |                 | 20-         |        | X        |                                                                                                                   | 90                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                          |                 |                  |                     |                                       |                                         |                    |              |      |
| - : | 50.1            | 25-         |        |          | Medium dense reddish brawn SANDY SILT (ML) -w/clay seams and clay stone 23.5'-25'                                 | 16                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                          |                 |                  |                     |                                       |                                         |                    |              |      |
| - 4 | 45.1            |             |        | <u> </u> | Very stiff reddish brown<br>FAT CLAY (CH) w/silt                                                                  |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                 |                  |                     |                                       |                                         |                    |              |      |
| - 4 | 43.1            | 30-         |        |          | seams, calcareous and ferrous nodules                                                                             | 22                                           | 100                              | e de la constante de la consta | 24                          | 61              | 24               | 37                  |                                       |                                         |                    |              |      |
|     | 五: 1            | TO Y        | WATE   | R        | IN BORING: 1st ENCOUNTERED AT 20.0 FT. DURING DE H AT 16.0 FT., HOLE OPEN TO 30.0 FT. O                           | ON O                                         | ·02                              | -13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | MIN             | . AT             | 17.0                | ) FT.                                 |                                         |                    |              |      |

|                  |                                         | LOG OF BORI                                                                                                                                                                                                   | VG N                                         | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | НМ                      | B-8                            | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                     | ~   |                                                       |                                                 |                                  |                             |
|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|-----|-------------------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------|
|                  | ION :                                   | FY2012 Lift Station Renewol/Replacem<br>Hardy Temp, Hunterwood, Harvest Moo<br>WBS No. R-000267-0111-3; City of<br>N 13841367.34, E 3045404.05<br>Dairy Ashford Rd; See Plan of Borings<br>EVATION: 73.55 FT. | n Lif<br>Pearl                               | t Sto<br>and,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion:<br>Text           | S                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | СОМ              | PLE                 |     | DEF                                                   | PTH                                             | 0194<br>: 30                     |                             |
| ELEVATION, FEET  | BOL                                     | SAMPLER: Shelby Tube/Split Spoon DRY AUGER: 0.0 TO 24.0 FT. WET ROTARY: 24.0 TO 30.0 FT.  DESCRIPTION OF MATERIAL                                                                                             | STANDARD PENETRATION<br>TEST, BLOWS PER FOOT | PERCENT PASSING<br>NO. 200 SIEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRY UNIT WEIGHT,<br>PCF | NATURAL MOISTURE<br>CONTENT, % | רוסחום רואוז, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLASTIC LIMIT, % | PLASTICITY INDEX, % | O H | RAINEI<br>IAND I<br>INCON<br>INCON<br>RIAXIA<br>ORVAN | D SHI<br>TS<br>PENET<br>FINED<br>SOLID<br>L COM | EAR S F ROMET COMP ATED-I JPRESS | ER<br>PRESS<br>UNDR<br>SION |
| 72.9             | 5                                       | 7.5" Concrete  Very stiff gray LEAN CLAY  (CL) w/sand, calcareous  nodules and ferrous stains  —gray and brown 4'—6'                                                                                          |                                              | THE COLUMN TWO COLUMNS TO THE COLUMN TWO COLUMN TWO COLUMN TWO COLUMN TWO COLUMN TWO COLUMN TO THE COLUMN TWO COLUMN |                         | 20<br>16                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |     |                                                       | )Δ                                              |                                  |                             |
| - 1              |                                         | -hard 6'-8'  -stiff to very stiff w/ferrous nodules 8'-12'  -very sandy clay 10'-16'                                                                                                                          |                                              | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114                     | 16                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15               | 17                  |     |                                                       | 0                                               | Δ                                | Ò                           |
| - 1:             | 5-1111111111111111111111111111111111111 | -stiff 14'-16'                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 17<br>14                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     | 0   | 0                                                     | Δ                                               |                                  |                             |
| 55.6             |                                         | Very stiff reddish brown LEAN CLAY (CL) w/ferrous nodules  Medium dense reddish brown                                                                                                                         |                                              | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 19                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17               | 9                   |     | Q                                                     | 4                                               | 7O                               |                             |
| - 20             |                                         | SANDY SILT (ML) w/clay<br>seams                                                                                                                                                                               | 12                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 18                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |     |                                                       |                                                 |                                  |                             |
| - 25             |                                         | —brown and gray 23'—25'                                                                                                                                                                                       | 12                                           | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 25                             | And the second s |                  |                     |     |                                                       |                                                 |                                  |                             |
| 43.6 - 30        |                                         | Reddish brown LEAN CLAY<br>(CL)                                                                                                                                                                               | 30                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 22                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |     |                                                       |                                                 |                                  |                             |
| - 35<br>DEPTH TO | WATER                                   | R IN BORING :<br>R 1st ENCOUNTERED AT 24.0 FT. DURING DI                                                                                                                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |     |                                                       |                                                 |                                  |                             |

Asphaltic

Concrete

### SYMBOLS AND TERMS USED ON BORING LOGS

SOIL TYPES
(SHOWN IN SYMBOL COLUMN)

(SHOWN IN SAMPLER TYPES
(SHOWN IN SAMPLES COLUMN)

Fill Gravel Sand SILT CLAY LEAN Sandy Pitcher Nx Shelby Piston Split No Auger CLAY LEAN Barrel Core Tube

SAMPLER TYPES
(SHOWN IN SAMPLES COLUMN)

Predominant type shown heavy

### TERMS DESCRIBING CONSISTENCY OR CONDITION

CLAY

| Basic Soil Type | Density or<br>Consistency | Standard Penetration<br>Resistance, <sup>(1)</sup><br>Blows/ft. | Unconfined Compressive<br>Strength (q <sub>u</sub> ), <sup>(2)</sup><br>Tons/sq. ft. |
|-----------------|---------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Cohesionless    | Very loose                | Less than 4                                                     | Not applicable                                                                       |
|                 | Loose                     | 4 to <10                                                        | Not applicable                                                                       |
|                 | Medium dense              | 10 to <30                                                       | Not applicable                                                                       |
|                 | Dense                     | 30 to <50                                                       | Not applicable                                                                       |
| •               | Very dense                | 50 or greater                                                   | Not applicable                                                                       |
| Cohesive        | Very soft                 | Less than 2                                                     | Less than 0.25                                                                       |
|                 | Soft                      | 2 to <4                                                         | 0.25 to <0.5                                                                         |
|                 | Firm/Medium stiff         | 4 to <8                                                         | 0.5 to <1.0                                                                          |
| ·               | Stiff                     | 8 to <15                                                        | 1.0 to <2.0                                                                          |
|                 | Very stiff                | 15 to <30                                                       | 2.0 to <4.0                                                                          |
|                 | Hard                      | 30 or greater                                                   | 4 or greater                                                                         |

- (1) Number of blows from 140-lb. weight falling 30-in. to drive 2-in. OD, 1-3/8-in. ID, split barrel sampler (ASTM D1586)
- (2) qu may also be approximated using a pocket penetrometer

### TERMS CHARACTERIZING SOIL STRUCTURE

| Parting: -paper thin in size | Seam: -1/8" to 3" thick                                                                 | Layer: -greater than 3"                   |
|------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|
| Slickensided                 | <ul> <li>having inclined planes of weakn appearance.</li> </ul>                         | ·                                         |
| Fissured                     | <ul> <li>containing shrinkage cracks, fre<br/>usually more or less vertical.</li> </ul> | quently filled with fine sand or silt;    |
| Laminated                    | <ul> <li>composed of thin layers of varying</li> </ul>                                  | ng color and texture.                     |
| Interbedded                  | - composed of alternate layers of                                                       | different soil types.                     |
| Calcareous .                 | - containing appreciable quantities                                                     | s of calcium carbonate.                   |
| Well graded                  | <ul> <li>having wide range in grain sizes<br/>intermediate particle sizes.</li> </ul>   | and substantial amounts of all            |
| Poorly graded                | <ul> <li>predominantly of one grain size,<br/>intermediate size missing.</li> </ul>     | or having a range of sizes with some      |
| Flocculated                  | - pertaining to cohesive soils that                                                     | exhibit a loose knit or flakey structure. |

# PIEZOMETER INSTALLATION REPORT

| PROJECT NAME: FY 12 LIFT STATION RENE<br>HARVEST MOON LIFT STAT | WAL AND REPLACEMENT<br>ON, WBS NO. R-000267-0111-3 | PIEZOMETER NUMBER: HMB-1P |
|-----------------------------------------------------------------|----------------------------------------------------|---------------------------|
| GEOTECHNICAL CONSULTANT GEOTEST ENGINEERING, INC.               | DESIGN CONSULTANT<br>ARCADIS US                    | HOUSTON, TEXAS            |



| NOTES: 1. DIMENSIONS NOMINAL UNLESS     | DRILLED BY:<br>DG | STARTED:<br>6-24-13   | NORTHING: 13841099.04<br>EASTING: 3047437.25 |
|-----------------------------------------|-------------------|-----------------------|----------------------------------------------|
| OTHERWISE NOTED  2. TOG = TOP OF GROUND | LOGGED BY:<br>TM  | COMPLETED:<br>6-24-13 | GROUND LEVEL (MSL): 68.74 FT                 |
|                                         | CHECKED BY:<br>NK | APPROVED BY:<br>MB    | SHEET <u>1</u> OF <u>1</u>                   |

## PIEZOMETER INSTALLATION REPORT

| PROJECT NAME:       | FY 12 LIFT STATION RENEWAL HARVEST MOON LIFT STATION, | AND REPLACEMENT WBS NO. R-000267-0111-3 | PIEZOMETER NUMBER: HMB-7P |
|---------------------|-------------------------------------------------------|-----------------------------------------|---------------------------|
| GEOTECHNICAL<br>GEO | . CONSULTANT<br>DTEST ENGINEERING, INC.               | DESIGN CONSULTANT ARCADIS, US           | HOUSTON, TEXAS            |



| NOTES: 1. DIMENSIONS NOMINAL UNLESS     | DRILLED BY:<br>DG | STARTED:<br>5-30-13   | NORTHING: 13840919.65<br>EASTING: 3045429.02 |
|-----------------------------------------|-------------------|-----------------------|----------------------------------------------|
| OTHERWISE NOTED  2. TOG = TOP OF GROUND | LOGGED BY:<br>TM  | COMPLETED:<br>5-30-13 | GROUND LEVEL (MSL): 73.12 FT                 |
|                                         | CHECKED BY:<br>NK | APPROVED BY:<br>MB    | SHEET <u>1</u> OF <u>1</u>                   |

# APPENDIX B

|                                    | <u>Figure</u>   |
|------------------------------------|-----------------|
| Summary of Laboratory Test Results | B-1 thru B-12   |
| Grain Size Distribution Curves     | .B-13 thru B-16 |

| SU     | MMA, | RY OF LA                              | LABOR                                                                                                                          | TATOR   | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO | JECT                |                                             | E: FY2012<br>Hardy T<br>WBS No                                                 | NAME: FY2012 Lift Station Renewal/Replacement - Northbrook, Hardy Temp, Hunterwood, Harvest Moon Lift Stations WBS No. R-000267-0111-3. City of Beneficial Texas | Renework Inwood,  | Arvest<br>Arvest                      | Moon Li           | - Northb                     | orook,           |
|--------|------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|----------------|------------------|-----|---------------------|---------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|-------------------|------------------------------|------------------|
|        | - 1  | ceo1e                                 |                                                                                                                                | JINEE   | 1                                  |                |                  | PRO | PROJECT             | 1                                           | BER: 1140                                                                      | 194901                                                                                                                                                           | -                 | ,<br>5                                |                   | and, lex                     | s D              |
| [      |      | SAM                                   | SAMPLE                                                                                                                         | ****    |                                    |                |                  | ATT | ATTERBERG<br>LIMITS |                                             |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                                                                                                                |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE           | POCKET<br>PENE –<br>TROMETER |                  |
|        |      | Depth<br>(ft.)                        | €O                                                                                                                             |         |                                    | WATER          | DRY              | í   |                     |                                             | PASSING<br>NO. 200                                                             | Shear                                                                                                                                                            | , ,,              | Conf                                  |                   | Shear                        |                  |
| è      | ᆜ    | Тор                                   | Bottam                                                                                                                         | Туре    | SPI<br>(blows/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf) | Ⅎ   | ٦<br>-              | <u>.</u>                                    | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                                                                                                                                | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf) | Strength<br>(tsf)            | TYPE OF MATERIAL |
| 2      |      | 0.8                                   | 2.0                                                                                                                            | 9       |                                    | 14             |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       | 2.25              | 2.00                         | II.              |
| 1. 1   | ы    | 2.0                                   | 4.0                                                                                                                            | 9       |                                    | 20             |                  | 61  | 24                  | 37                                          |                                                                                |                                                                                                                                                                  |                   |                                       | 2.25              | 1.00                         | Ē                |
| ~ ,    | 4    | 4.0                                   | 6.0                                                                                                                            | 9       |                                    | 18             |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       | 1.25              | 1.00                         | E                |
| 41 1   | 2    | 6.0                                   | 8.0                                                                                                                            | an      |                                    | 27             |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       | 09:0              | 0.75                         | 115              |
| •      | 9    | 8.0                                   | 10.0                                                                                                                           | 9       |                                    | 28             | 96               | 56  | 27                  | 29                                          | 86                                                                             |                                                                                                                                                                  | 0.50              | 0.72                                  | 0.50              | 0.50                         | E                |
|        | 7    | 10.0                                  | 12.0                                                                                                                           | 9       |                                    | 28             |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       | 0.50              | 0.25                         | E                |
|        | 80   | 12.0                                  | 14.0                                                                                                                           | 9       |                                    | 28             |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       | 0.25              | 0.25                         | E                |
|        | 6    | 14.0                                  | 15.0                                                                                                                           | 9       |                                    | 31             |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       | 0.25              | 0.25                         | E                |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        |      |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
|        | _    |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |
| SSSE X |      | UNDISTUSPLIT SP<br>AUGER C<br>PITCHER | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>A AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>• NX-DOUBBLE RARREL SAMPLE | MPLE, E | <u>≅</u>                           | FIELD          |                  | 유민  | Stories Play        | andord<br>uid Lim<br>istic Lir<br>sticity I | Standard Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index | Test                                                                                                                                                             |                   |                                       |                   |                              |                  |
|        | 1    |                                       |                                                                                                                                |         |                                    |                |                  |     |                     |                                             |                                                                                |                                                                                                                                                                  |                   |                                       |                   |                              |                  |

|         | SUMA   | tary oi                                 | F LABOR                                                                                                                              | ATOR                              | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO                                  | JECT                 | PROJECT NAME:                   | 1                                                                              | Lift Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Renewo            | N Reple                                 | ncement           | Northb                      | rook,            |
|---------|--------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|----------------|------------------|--------------------------------------|----------------------|---------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-------------------|-----------------------------|------------------|
|         |        | CEOTEST                                 |                                                                                                                                      | SINE                              | ENGINEERING, INC.                  |                |                  | PRO                                  | PROJECT              | W<br>NUMBER:                    | WBS No<br>3ER: 1140                                                            | WBS No. R-000267-0111-3; City of Pearland, Texas<br>R: 1140194901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-0111-           | -3; City                                | of Pearl          | and, Tex                    | S D              |
|         |        | SA                                      | SAMPLE                                                                                                                               |                                   |                                    |                |                  | HA<br>L                              | ATTERBERG<br>LIMITS  | ည္က                             |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U)   | TORVANE           | POCKET<br>PENE—<br>TROMETER |                  |
| ON B    |        | De<br>(i                                | Depth<br>(ft.)                                                                                                                       |                                   |                                    | WATER          | DRY              |                                      |                      | ;                               | PASSING<br>NO. 200                                                             | Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , ,,              | Conf.                                   | 1                 | Shear                       |                  |
| NO.     | Š.     | Тор                                     | Bottom                                                                                                                               | Туре                              | (blows/ft.)                        | CONTENT<br>(%) | DENSITY<br>(pcf) | Ⅎ                                    | <br>Z                | <u> </u>                        | Sieve<br>(%)                                                                   | Strength<br>(tsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Strength<br>(tsf) | Press.<br>(tsf)                         | Strength<br>(tsf) | Strength<br>(tsf)           | TYPE OF MATERIAL |
| HTB-1   | 2      | 1.0                                     | 2.0                                                                                                                                  | On.                               |                                    | 16             |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         | 0.40              | 0.50                        | ESI              |
|         | 4      | 4.0                                     | 6.0                                                                                                                                  | Gn                                |                                    | 17             |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         | 1.13              | 1.63                        | Sandy Lean Clay  |
|         | 5      | 6.0                                     | 8.0                                                                                                                                  | an                                |                                    | 16             | 115              | 37                                   | 16                   | 21                              | 59                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59              | 0.58                                    | 1.00              | 1.38                        | Sandy Lean Clay  |
|         | 9      | 8.5                                     | 10.0                                                                                                                                 | SS                                | 12                                 | 15             |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             | Silty Sand       |
|         | 7      | 10.5                                    | 12.0                                                                                                                                 | SS                                | 12                                 | 20             |                  |                                      |                      |                                 | 18                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             | Silty Sand       |
|         | 80     | 12.5                                    | 14.0                                                                                                                                 | SS                                | 19                                 | 21             |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             | Silty Sand       |
|         | 6      | 14.5                                    | 16.0                                                                                                                                 | SS                                | 23                                 | 20             |                  |                                      |                      |                                 |                                                                                | Principal and Administration of the Principal and Administration o |                   |                                         |                   |                             | Silty Sand       |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                | ALABAN TO THE PROPERTY OF THE  |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                | T- Period and the state of the  |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        |                                         |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
|         |        | *************************************** |                                                                                                                                      |                                   |                                    |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |                   |                             |                  |
| LEGEND: | SSS AX | SPLIT S<br>AUGER (<br>PITCHER           | = UNDISTURBED SAMPLE, EXTRUDI<br>= SPLIT SPOON SAMPLE<br>= AUGER CUTTINGS<br>= PITCHER BARREL SAMPLE<br>= Nx-DOJIRRI F RARREL SAMPLE | APLE,<br>IPLE<br>SAMPLI<br>RFI SY | <u>≅</u>                           | FIELD          |                  | R<br>T<br>T<br>T<br>T<br>T<br>T<br>T | Star<br>Liqu<br>Plas | ndard I<br>lid Limi<br>stic Lin | Standard Penetration Test<br>Liquid Limit<br>Plostic Limit<br>Plosticity Index | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                         |                   |                             |                  |
|         | יוי    | 200                                     | 1                                                                                                                                    | ז<br>ור                           | JMIT LL                            |                |                  |                                      |                      |                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | *************************************** |                   |                             |                  |

|         | SUMN                                                       | IARY OF                                  | F LABOR                                                                                                                           | ATOR                               | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO         | PROJECT                   | 1                                           | E: FY2012<br>Hardy Te                                                          | NAME: FY2012 Lift Station Renewal/Replacement - Northbrook,<br>Hardy Temp, Hunterwood, Harvest Moon Lift Stations | Renewa            | //Replc                               | Icement Moon Lit  | - Northb                   | rook,            |
|---------|------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|----------------|------------------|-------------|---------------------------|---------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|-------------------|----------------------------|------------------|
|         |                                                            | GEOTEST                                  | ST EN                                                                                                                             | SINEE                              | ENGINEERING, INC.                  |                |                  | PRO         | PROJECT                   |                                             | WBS No.<br>BER: 11401                                                          | . R-000267                                                                                                        | -0111             | 3; City                               | of Pearl          | and, Tex                   | S D              |
|         |                                                            | SAN                                      | SAMPLE                                                                                                                            |                                    |                                    |                |                  | ATT         | ATTERBERG<br>LIMITS       | <u>ح</u>                                    |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                                                                 |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE           | POCKET<br>PENE<br>TROMETER |                  |
| Q Q     |                                                            | De<br>(†                                 | Depth<br>(ft.)                                                                                                                    |                                    |                                    | WATER          | DRY              |             |                           |                                             | PASSING<br>NO. 200                                                             | Shear                                                                                                             | "                 | Conf.                                 | 1                 | Shear                      |                  |
| NO.     | No.                                                        | Тор                                      | Bottom                                                                                                                            | Туре                               | SPI<br>(blows/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf) | <b>-</b>    | <u>ط</u>                  | <u>~</u>                                    | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                                                                                 | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf) | Strength<br>(tsf)          | TYPE OF MATERIAL |
| HTB-2   | 2                                                          | 1.2                                      | 2.0                                                                                                                               | 9                                  |                                    | 14             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       | 1.13              | 1.50                       | Sandy Lean Clay  |
|         | ы                                                          | 2.0                                      | 4.0                                                                                                                               | 95                                 |                                    | 14             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       | 0.88              | 1.25                       | Sandy Leon Clay  |
|         | 4                                                          | 4.0                                      | 6.0                                                                                                                               | 9                                  |                                    | 14             | 114              | 30          | 16                        | 14                                          |                                                                                |                                                                                                                   | 0.61              | 0.43                                  | 0.63              | 0.88                       | Sandy Lean Clay  |
|         | S.                                                         | 6.0                                      | 8.0                                                                                                                               | gn                                 |                                    | 15             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       | 0.68              | 0.88                       | Sandy Lean Clay  |
|         | 9                                                          | 8.0                                      | 10.0                                                                                                                              | 9                                  |                                    | 14             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       | 1.13              | 0.88                       | Sandy Lean Clay  |
|         | 7                                                          | 10.0                                     | 12.0                                                                                                                              | an                                 |                                    | 15             | 120              |             |                           |                                             |                                                                                |                                                                                                                   | 0.44              | 0.86                                  | 1.25              | 1.25                       | Sandy Lean Clay  |
|         | 80                                                         | 12.5                                     | 14.0                                                                                                                              | SS                                 | 16                                 | 22             |                  |             |                           |                                             | 15                                                                             |                                                                                                                   |                   |                                       |                   |                            | Silty Sand       |
|         | 6                                                          | 14.5                                     | 16.0                                                                                                                              | SS                                 | 22                                 | 19             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            | Silty Sond       |
|         | 5                                                          | 16.0                                     | 17.0                                                                                                                              | g                                  |                                    | 17             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       | 0.88              | 1.13                       | Leon Clay        |
|         | =                                                          | 18.0                                     | 20.0                                                                                                                              | an                                 |                                    | 31             |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       | 1.00              | 1.00                       | Lean Clay        |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             |                                                                                |                                                                                                                   |                   |                                       |                   |                            |                  |
| LEGEND: | SSS<br>NX BAG<br>NX BB II | SPLIT SI<br>AUGER (<br>PITCHER<br>Nx-DOU | = UNDISTURBED SAMPLE, EXTRUDI<br>= SPLIT SPOON SAMPLE<br>= AUGER CUTINGS<br>= PITCHER BARREL SAMPLE<br>• Nx—DOUBBLE BARREL SAMPLE | MPLE, 1<br>PLE<br>SAMPLE<br>REL SA | EXTRUDED IN FIELD<br>E<br>AMPLE    | эего           |                  | R<br>무<br>- | = Sta<br>= Liqu<br>= Plas | indard<br>uid Lim<br>istic Lir<br>sticity I | Standard Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index | est                                                                                                               |                   |                                       |                   |                            |                  |
|         |                                                            |                                          |                                                                                                                                   |                                    |                                    |                |                  |             |                           |                                             | ***************************************                                        | ***************************************                                                                           |                   |                                       |                   |                            |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUMN                                    | IARY OI                                  | 7 LABOR                                                                                                                         | ATOR       | SUMMARY OF LABORATORY TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SULTS          |                  | PRO              | PROJECT                              | NAME:                                     | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lift Station                                                      | Renewo            | Reply<br>Harvest                      | scement           | Northb                      | rook,            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|---------------------------------------|-------------------|-----------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | CEOTE                                    | CEOTEST ENCINEERING,                                                                                                            | TINEE      | RING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  | PRO              | PROJECT                              | N<br>N<br>M                               | WBS No<br>NUMBER: 1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WBS No. R-000267-0111-3; City of Pearland, Texas<br>R: 1140194901 | 7-0111-           | 3; City                               | of Pearl          | and, Tex                    | 22<br>QS         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | SAI                                      | SAMPLE                                                                                                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  | ATT              | ATTERBERG<br>LIMITS                  | 22                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                 |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE           | POCKET<br>PENE—<br>TROMFTER |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | De<br>(1                                 | Depth<br>(ft.)                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER          | DRY              | 1                |                                      |                                           | PASSING<br>NO. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shear                                                             | 1 0               | Conf.                                 |                   | Shear                       |                  |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.                                     | Тор                                      | Bottom                                                                                                                          | Туре       | SPT<br>(blows/ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONTENT<br>(%) | DENSITY<br>(pcf) | Ⅎ                | ۲                                    | ₫                                         | SIEVE<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strength<br>(tsf)                                                 | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf) | Strength<br>(tsf)           | TYPE OF MATERIAL |
| HWB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                       | 1.0                                      | 2.0                                                                                                                             | g,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Fot Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                       | 2.0                                      | 4.0                                                                                                                             | Ωn         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23             |                  |                  |                                      |                                           | THE THE PARTY OF T |                                                                   |                   |                                       | 1.38              | 1.25                        | Fat Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                       | 4.0                                      | 6.0                                                                                                                             | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 1.00              | 0.75                        | Fat Clay         |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                                       | 6.0                                      | 8.0                                                                                                                             | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25             | 96               | 58               | 21                                   | 37                                        | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | 0.75              | 0.58                                  | 09.0              | 0.50                        | Fat Clay         |
| A CONTRACTOR OF THE PROPERTY O | 9                                       | 8.0                                      | 10.0                                                                                                                            | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 0.50              | 0.38                        | Fat Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                       | 10.0                                     | 12.0                                                                                                                            | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 09:0              | 0.38                        | Fat Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                      | 12.0                                     | 14.0                                                                                                                            | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 0.30              | 0.25                        | Fat Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                       | 14.0                                     | 16.0                                                                                                                            | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35             | 84               | 58               | 22                                   | 36                                        | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | 0.31              | 1.15                                  | 0:30              | 0.25                        | Fat Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                       | 16.0                                     | 18.0                                                                                                                            | an         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 0.35              | 0.38                        | Fot Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                       | 18.0                                     | 20.0                                                                                                                            | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 0:20              | 0.25                        | Fat Clay         |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                      | 20.0                                     | 22.0                                                                                                                            | 9n         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 0.35              | 0.38                        | Fot Clay         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                      | 22.0                                     | 24.0                                                                                                                            | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       | 0.35              | 0.25                        | Sandy Lean Clay  |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-                                      | 24.0                                     | 26.0                                                                                                                            | S          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Sandy Lean Clay  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                      | 26.5                                     | 28.0                                                                                                                            | SS         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21             |                  |                  |                                      |                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                   |                                       |                   |                             | Silty Sand       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                      | 28.5                                     | 30.0                                                                                                                            | SS         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Silty Sand       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                      | 30.5                                     | 32.0                                                                                                                            | SS         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Silty Sand       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81                                      | 32.5                                     | 34.0                                                                                                                            | SS         | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Silty Sand       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                      | 34.5                                     | 36.0                                                                                                                            | SS         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Sand             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                      | 36.5                                     | 38.0                                                                                                                            | SS         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24             |                  |                  |                                      |                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                   |                                       |                   |                             | Sand             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                                      | 38.5                                     | 40.0                                                                                                                            | SS         | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Sand             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                      | 40.5                                     | 42.0                                                                                                                            | SS         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23             |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             | Sond             |
| LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N B S S S S S S S S S S S S S S S S S S | SPLIT SI<br>AUGER (<br>PITCHER<br>Nx-DOU | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>A AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>• Nx-DOUBBLE BARREL, SAMPLE | APLE, EPLE | <u>≅</u><br>Q:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIELD          |                  | S<br>무<br>무<br>- | = Star<br>= Liqu<br>= Plas<br>= Plas | ndard<br>Jid Lim<br>Stic Lir<br>iticity I | Standard Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test                                                              |                   |                                       |                   |                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                                          |                                                                                                                                 |            | The state of the s |                |                  |                  |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |                                       |                   |                             |                  |

|         | SUMIN                                             | IARY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - LABOF                                                                                                                           | ATOF                            | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO             | JECT                     | PROJECT NAME:                             | E: FY2012<br>Hardy Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAME: FY2012 Lift Station Renewal/Replacement — Northbrook,<br>Hardy Temp, Hunterwood, Harvest Moon Lift Stations | Renewa<br>rwood, ł                    | 1/Replc<br>tarvest      | Icement<br>Moon Lit | - Northb<br>ft Station      | rook,<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------|------------------|-----------------|--------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|---------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                   | GEOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GEOTEST ENCINEERING,                                                                                                              | SINE                            | ERING, INC.                        |                |                  | PRO             | PROJECT                  | NUMI                                      | WBS No.<br>BER: 11401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . R-000267                                                                                                        | -0111                                 | 3; City                 | of Pearl            | and, Texe                   | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                   | SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE                                                                                                                            |                                 |                                    |                |                  | ATT             | ATTERBERG<br>LIMITS      | ညွ                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                                                                 | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | (IAL<br>ESSION<br>(U-U) | TORVANE             | POCKET<br>PENE-<br>TROMETER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ON ACC  |                                                   | O<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth<br>(ft.)                                                                                                                    |                                 |                                    | WATER          | DRY              | 1               | ī                        | ā                                         | PASSING<br>NO. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | Shear                                 | 1                       | 1                   | Shear                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO.     | No.                                               | Тор                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bottom                                                                                                                            | Туре                            | (blows/ft.)                        | CONIENI<br>(%) | DENSILY<br>(pcf) | Ⅎ               | <u> </u>                 | <u> </u>                                  | Sieve<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strength<br>(tsf)                                                                                                 | Strength<br>(tsf)                     | Press.<br>(tsf)         | Strength<br>(tsf)   | Strength<br>(tsf)           | TYPE OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HWB-1   | 23                                                | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.0                                                                                                                              | 9                               |                                    | 27             | 97               | 40              | 17                       | 23                                        | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | 0.35                                  | 3.17                    | 0.25                | 0.25                        | Leon Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 24                                                | 44.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.0                                                                                                                              | SS                              | 26                                 | 20             |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 25                                                | 46.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48.0                                                                                                                              | SS                              | 19                                 | 20             |                  |                 |                          |                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                       |                         |                     |                             | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 26                                                | 48.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.0                                                                                                                              | SS                              | 23                                 | 19             |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 27                                                | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52.0                                                                                                                              | SS                              | 21                                 | 21             |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             | Action research to the first the fir |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             | A CANADA                                                                                                                                                                                                                                                                     |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   | THE PROPERTY OF THE PROPERTY O |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                 |                                    |                |                  |                 |                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEGEND: | SSS<br>X<br>N<br>BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | SPLIT S<br>SPLIT S<br>AUGER (<br>PITCHER<br>Nx-DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = UNDISTURBED SAMPLE, EXTRUDI<br>= SPLIT SPOON SAMPLE<br>= AUGER CUTINGS<br>= PITCHER BARREL SAMPLE<br>= Nx—DOUBBLE BARREL SAMPLE | MPLE,<br>APLE<br>SAMPI<br>REL S | ED II                              | FIELD          |                  | SPT<br>PP<br>PP | = Sta<br>= Liqu<br>= Pla | andard<br>uid Lim<br>Istic Lii<br>sticity | Standard Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | est                                                                                                               |                                       |                         |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 1                                                 | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                 |                                    |                |                  |                 | *                        | ***************************************   | Name and Associated to the Party of the Part | ***************************************                                                                           |                                       | -                       | -                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| SUMMARY OF LABORATORY TEST RESULTS Hardy Temp, Hunterwood, Harvest Moon Lift Stations WBS No. R-000267-0111-3; City of Pearland, Texas PROJECT NUMBER: 1140194901 | ATTERBERG COMPRESSION TORVANE PENE- LIMITS TEST (U-U) | WATER DRY NO. 200 Shear Shear Shear | SPT CONTENT DENSITY LL PL PI SIEVE Strength Strength Strength Strength (1st) (1st) (1st) (1st) TYPE OF MATERIAL | UD 8 33 16 17 2.00 2.25 Lean Clay | UD 22 2.00 2.13 Lean Cloy | SS 16 11 56 Sandy Silt | SS 15 6 Silty Sond | SS 31 8 Silty Sond | SS 6 12 Silty Sond | SS 13 13 Silty Sond | SS 7 16 Silty Sond | SS .13 20 Lean Clay | UD 19 113 43 18 25 82 0.75 1.44 2.13 1.38 Leon Clay | UD 20 1.25 0.88 Lean Clay | UD 21 2.25 Lean Clay | UD 24 43 20 23 93 1.63 0.75 Lean Clay | UD 21 Clay Clay | UD         22         0.50         Lean Clay | SS 31 23 76 Lean Clay | SS 35 22 21 17 4 78 Silt | SS 82/5.0" 20 73 Sit | UD         22         25         19         6         91         6         91         6.25         0.50         Silty Clay | SS 18 23 Silty Clay | SS 33 23 Sondy Silt | UNDISTURBED SAMPLE, EXTRUDED IN FIELD SPT = Standard Penetration Test SPLIT SPOON SAMPLE LL = Liquid Limit LL = Liquid Limit PI = Plostic Limit PI = Plostic Limit PI = Plostic Limit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------------------|--------------------|--------------------|--------------------|---------------------|--------------------|---------------------|-----------------------------------------------------|---------------------------|----------------------|---------------------------------------|-----------------|----------------------------------------------|-----------------------|--------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y TEST RESULTS<br>SRINC, INC.                                                                                                                                     |                                                       | WATER                               | SPT CONTENT (blows/ft.) (%)                                                                                     | 80                                | 22                        |                        |                    |                    |                    |                     |                    |                     | 1                                                   | 20                        | 21                   | 24                                    | 21              | 22                                           |                       |                          | 5.0"                 | 22                                                                                                                         |                     |                     | DED IN                                                                                                                                                                                |
| LABORATOF<br>T ENCINE!                                                                                                                                            | J.                                                    |                                     | Bottom Type                                                                                                     | 2.0 UD                            | 4.0 UD                    | 6.0 SS                 | 8.0 SS             | 10.0 SS            | 12.0 SS            | 14.0 SS             | 16.0 SS            | 18.0 SS             | 20.0 UD                                             | 22.0 UD                   | 24.0 UD              | 26.0 UD                               | 28.0 UD         | 30.0 UD                                      | 32.0 SS               | 34.0 SS                  | 36.0 SS              | 38.0 UD                                                                                                                    | 40.0 SS             | 42.0 SS             | BED SAMPLE,<br>ON SAMPLE<br>TTINGS                                                                                                                                                    |
| UMMARY OF LA<br>CEOTEST                                                                                                                                           | SAMPLE                                                | Depth<br>(ft.)                      | Na. Top                                                                                                         | 2 1.4                             | 3 2.0                     | 4 4.5                  | 5 6.5              | 6 8.5              | 7 10.5             | 8 12.5              | 9 14.5             | 10 16.5             | 11 18.0                                             | 12 20.0                   | 13 22.0              | 14 24.0                               | 15 26.0         | 16 28.0                                      | 17 30.5               | 18 32.5                  | 19 34.5              | 20 36.0                                                                                                                    | 21 38.5             | 22 40.5             | UD = UNDISTURE<br>SS = SPLIT SPO<br>AG = AUGER CU                                                                                                                                     |
| SI SI                                                                                                                                                             |                                                       |                                     | BORING<br>NO.                                                                                                   | нив-т (нив-тР)                    |                           |                        |                    |                    |                    |                     |                    | -                   | -                                                   | -                         | • -                  |                                       | •-              | •-                                           | -                     | • -                      | •-                   |                                                                                                                            |                     | .,                  | LEGEND: U                                                                                                                                                                             |

|                | SUMM   | IARY OI             | 7 LABOR                                                                                                                    | ATOR                             | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRC      | PROJECT             | 1                                        | E: FY2012                                                                      | Lift Station                                                        | Renewa            | II/Replo                              | Renewal/Replacement | Northbrook,                 | rook,            |
|----------------|--------|---------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|----------------|------------------|----------|---------------------|------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|---------------------------------------|---------------------|-----------------------------|------------------|
|                |        | GEOTEST             |                                                                                                                            | SINE                             | ENCINEERING, INC.                  | _              |                  | PRO      | PROJECT             |                                          | WBS No<br>BER: 1140                                                            | WBS No. R-000267-0111-3; City of Pearland, Texas NUMBER: 1140194901 | -0111             | 3; City                               | of Pearl            | and, Tex                    | SD<br>SD         |
|                |        | SAN                 | SAMPLE                                                                                                                     |                                  |                                    |                |                  | TTA<br>L | ATTERBERG<br>LIMITS | 22                                       |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                   |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE             | POCKET<br>PENE—<br>TROMETER |                  |
| 0              |        | De<br>(†            | Depth<br>(ft.)                                                                                                             |                                  |                                    | WATER          |                  |          |                     |                                          | PASSING<br>NO. 200                                                             | Shear                                                               | Shear             | Conf.                                 | 1                   | Shear                       |                  |
| NO.            | Š.     | Тар                 | Bottom                                                                                                                     | Туре                             | SPT<br>(blows/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf) | Ⅎ        | ٦                   | <u></u>                                  | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                                   | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf)   | Strength<br>(tsf)           | TYPE OF MATERIAL |
| нив-1 (нив-1Р) | 23     | 42.5                | 44.0                                                                                                                       | SS                               | 13                                 | 23             |                  |          |                     |                                          | 68                                                                             |                                                                     |                   |                                       |                     |                             | Sandy Silt       |
|                | 24     | 44.5                | 46.0                                                                                                                       | SS                               | 34                                 | 22             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             | Sandy Silt       |
|                | 25     | 46.0                | 48.0                                                                                                                       | an                               |                                    | 23             | 104              | 65       | 25                  | 40                                       | 100                                                                            |                                                                     | 2.14              | 3.46                                  | 2.25                | 2.25                        | Fat Clay         |
|                | 26     | 48.0                | 50.0                                                                                                                       | Gn .                             |                                    | 25             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Fat Clay         |
|                | 27     | 50.0                | 52.0                                                                                                                       | an                               |                                    | 28             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Fat Clay         |
|                | 28     | 52.0                | 54.0                                                                                                                       | g                                |                                    | 29             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Fot Clay         |
|                | 29     | 54.0                | 56.0                                                                                                                       | an                               |                                    | 24             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Fat Clay         |
|                | 30     | 56.0                | 58.0                                                                                                                       | an                               |                                    | 28             | 98               | 76       | 28                  | 48                                       | 100                                                                            |                                                                     | 1.29              | 4.18                                  | 2.25                | 2.25                        | Fat Clay         |
|                | 31     | 58.0                | 60.0                                                                                                                       | gn                               |                                    | 25             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Fot Clay         |
|                | 32     | 60.0                | 62.0                                                                                                                       | gn                               |                                    | 29             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Fat Clay         |
|                | 33     | 62.0                | 64.0                                                                                                                       | 9                                |                                    | 16             | 116              |          |                     |                                          |                                                                                |                                                                     | 2.50              | 4.61                                  | 2.25                | 2.25                        | Lean Clay        |
|                | 34     | 64.0                | 66.0                                                                                                                       | 9                                |                                    | 16             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Lean Clay        |
|                | 35     | 66.0                | 68.0                                                                                                                       | g                                |                                    | 18             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Lean Clay        |
|                | 36     | 68.0                | 70.0                                                                                                                       | 9                                |                                    | 19             |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       | 2.25                | 2.25                        | Lean Clay        |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
|                |        |                     |                                                                                                                            |                                  |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |
| LEGEND:        | SSS AX | SPLIT SI<br>AUGER ( | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>NY-DOURRIF RARREL SAMPLE | MPLE,<br>MPLE<br>SAMPL<br>RFI SA | O.<br>N                            | FIELD          |                  | SPT PP   | Sto                 | andard<br>uid Lin<br>astic Li<br>sticity | Standard Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index | Test                                                                |                   |                                       |                     |                             |                  |
|                | 1      |                     |                                                                                                                            | 1                                |                                    |                |                  |          |                     |                                          |                                                                                |                                                                     |                   |                                       |                     |                             |                  |

| <b>J</b> 2                                                                                                    | SUMM   | IARY OI                       | F LABOR                                                                                                                      | lator                               | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO         | PROJECT             | NAME:                                      |                                                                                | Lift Station                                                   | Renewo            | //Replo                                 | Joement           | Northb                       | rook,            |
|---------------------------------------------------------------------------------------------------------------|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------|------------------|-------------|---------------------|--------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-----------------------------------------|-------------------|------------------------------|------------------|
|                                                                                                               |        | CEOTEST                       | ST ENC                                                                                                                       | SINEE                               | ENGINEERING, INC.                  |                |                  | PRO         | PROJECT             | W.<br>NUMBER:                              | WBS No<br>BER: 1140                                                            | WBS No. R-000267-0111-3; City of Pearland, Texas R: 1140194901 | -0111-            | 3; City                                 | of Pearl          | and, Tex                     | s D              |
|                                                                                                               |        | SA                            | SAMPLE                                                                                                                       |                                     |                                    |                |                  | ATT         | ATTERBERG<br>LIMITS | ည္က                                        |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                              |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U)   | TORVANE           | POCKET<br>PENE -<br>TROMETER |                  |
| 0                                                                                                             |        | De<br>(.                      | Depth<br>(ft.)                                                                                                               |                                     |                                    | WATER          | DRY              | ļ           |                     |                                            | PASSING<br>NO. 200                                                             |                                                                | Shear             | Conf.                                   |                   | Shear                        |                  |
| NO.                                                                                                           | Š.     | Тор                           | Bottom                                                                                                                       | Туре                                | SPI<br>(blows/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf) | 님           | ٦                   | <u>a</u>                                   | SiEVE<br>(%)                                                                   | Strength<br>(tsf)                                              | Strength<br>(tsf) | Press.<br>(tsf)                         | Strength<br>(tsf) | Strength<br>(tsf)            | TYPE OF MATERIAL |
| HMB-2                                                                                                         | 2      | 0.5                           | 2.0                                                                                                                          | 9                                   |                                    | 18             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 2.25              | 2.25                         | Fot Clay         |
|                                                                                                               | 3      | 2.0                           | 4.0                                                                                                                          | 9                                   |                                    | 17             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 2.25              | 2.25                         | Fat Clay         |
|                                                                                                               | 4      | 4.0                           | 6.0                                                                                                                          | gn                                  |                                    | 21             | 106              | 76          | 28                  | 48                                         | 06                                                                             |                                                                | 1.53              | 0.43                                    | 2.25              | 1.75                         | Fat Clay         |
|                                                                                                               | S      | 6.0                           | 8.0                                                                                                                          | g                                   |                                    | 23             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 2.00              | 1.25                         | Fat Clay         |
| CONTRACTOR OF STREET, | 9      | 8.0                           | 10.0                                                                                                                         | 9                                   |                                    | 14             | 120              | 46          | 19                  | 27                                         | 76                                                                             |                                                                | 1.66              | 0.72                                    | 2.25              | 1.75                         | Lean Clay        |
|                                                                                                               | 7      | 10.0                          | 12.0                                                                                                                         | 9                                   |                                    | 11             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 2.25              | 2.25                         | Lean Clay        |
|                                                                                                               | 80     | 12.0                          | 14.0                                                                                                                         | 9                                   |                                    | 15             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 1.63              | 2.25                         | Lean Clay        |
|                                                                                                               | б      | 14.0                          | 16.0                                                                                                                         | 90                                  |                                    | 20             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 1.50              | 1.63                         | Lean Clay        |
|                                                                                                               | 5      | 16.0                          | 18.0                                                                                                                         | gn                                  |                                    | 20             | 108              | 26          | 18                  | 8                                          | 63                                                                             |                                                                | 0.34              | 1.30                                    | 0.20              | 0.63                         | Sandy Lean Clay  |
|                                                                                                               | =      | 18.5                          | 20.0                                                                                                                         | SS                                  | 13                                 | 20             |                  |             |                     |                                            | 64                                                                             |                                                                |                   |                                         |                   |                              | Sandy Lean Clay  |
|                                                                                                               | 12     | 23.0                          | 25.0                                                                                                                         | g                                   |                                    | 21             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 0.20              | 0.50                         | Sandy Lean Clay  |
|                                                                                                               | 13     | 28.0                          | 30.0                                                                                                                         | g                                   |                                    | 18             |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         | 1.75              | 2.25                         | Sandy Lean Clay  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              |                                     |                                    |                |                  |             |                     |                                            |                                                                                |                                                                |                   |                                         |                   |                              |                  |
| LEGEND:                                                                                                       | SSS XX | SPLIT S<br>AUGER (<br>PITCHER | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>= NX-DOUBBIF BARREL SAMPLE | MPLE, I<br>APLE<br>SAMPLE<br>RFI SA | ED                                 | FIELD          |                  | A<br>무<br>교 | Store Light         | indard<br>Jid Lim<br>stic Lir<br>sticity I | Standard Penetration Test<br>Liquid Limit<br>Plostic Limit<br>Plosticity Index | Test                                                           |                   |                                         |                   |                              |                  |
|                                                                                                               |        |                               |                                                                                                                              | 1                                   |                                    |                |                  | -           | -                   |                                            |                                                                                |                                                                |                   | *************************************** |                   |                              |                  |

| <b>J</b> | SUMM                                      | (ARY OI                                   | F LABOF                                                                                                                     | RATOR                   | SUMMARY OF LABORATORY TEST RESULTS | SULTS                                   |                  | PRO         | PROJECT             | NAME                            | E: FY2012<br>Hardy T                                                           | NAME: FY2012 Lift Station Renewal/Replacement - Northbrook,<br>Hardy Temb. Hunterwood. Harvest Moon Lift Stations | Renewo                                    | //Replc                                 | Scement<br>Moon 1 in | Northb                      | rook,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|-----------------------------------------|------------------|-------------|---------------------|---------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                           | CEOTEST                                   |                                                                                                                             | SINE                    | ENGINEERING, INC.                  |                                         |                  | PRO         | PROJECT             | NUME                            | WBS /No<br>3ER: 1140                                                           | . R-000267<br>194901                                                                                              | -0111                                     | 3; City                                 | of Pearl             | and, Tex                    | S S D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                           | SAN                                       | SAMPLE                                                                                                                      |                         |                                    |                                         |                  | ATT         | ATTERBERG<br>LIMITS | ည                               |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                                                                 |                                           | TRIAXIAL<br>COMPRESSION<br>TEST (U-U)   | TORVANE              | POCKET<br>PENE—<br>TROMETER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           | De<br>(¢                                  | Depth<br>(ft.)                                                                                                              |                         |                                    | WATER                                   | DRY              | 1           |                     |                                 | PASSING<br>NO. 200                                                             |                                                                                                                   | Shear                                     | Conf.                                   | 1                    | Sheor                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO.      | Š.                                        | Тор                                       | Bottom                                                                                                                      | Туре                    | SPI<br>(blows/ft.)                 | CONTENT<br>(%)                          | DENSITY<br>(pcf) | Ⅎ           | ਰ                   | <u></u>                         | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                                                                                 | Strength<br>(tsf)                         | Press.<br>(tsf)                         | Strength<br>(tsf)    | Strength<br>(tsf)           | TYPE OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HMB-3    | 2                                         | 6.0                                       | 2.0                                                                                                                         | Gn .                    |                                    | 16                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 2.00                 | 1.75                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | М                                         | 2.0                                       | 4.0                                                                                                                         | 9                       |                                    | 21                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 2.00                 | 1.25                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 4                                         | 4.0                                       | 6.0                                                                                                                         | 9                       |                                    | 23                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 1.50                 | 1.13                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 2                                         | 6.0                                       | 8.0                                                                                                                         | Ωn                      |                                    | 24                                      | 101              | 71          | 26                  | 45                              | 91                                                                             |                                                                                                                   | 0.64                                      | 0.58                                    | 1.75                 | 1.00                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 9                                         | 8.0                                       | 10.0                                                                                                                        | 9                       |                                    | 24                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 2.00                 | 1.25                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 7                                         | 10.0                                      | 12.0                                                                                                                        | 9                       |                                    | 22                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 2.00                 | 1.25                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 80                                        | 12.0                                      | 14.0                                                                                                                        | 9                       |                                    | 17                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 2.00                 | 1.50                        | Fot Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 6                                         | 14.0                                      | 16.0                                                                                                                        | 9                       |                                    | 21                                      | 110              | 51          | 19                  | 32                              | 80                                                                             |                                                                                                                   | 0.95                                      | 1.15                                    | 1.38                 | 1.00                        | Fot Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 2                                         | 16.0                                      | 18.0                                                                                                                        | 9                       |                                    | 17                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 1.00                 | 1.88                        | Sandy Lean Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | -                                         | 18.0                                      | 20.0                                                                                                                        | S                       |                                    | 15                                      |                  | 28          | 15                  | 13                              | 68                                                                             |                                                                                                                   |                                           |                                         | 0.50                 | 0.50                        | Sandy Lean Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 12                                        | 23.0                                      | 25.0                                                                                                                        | 9                       |                                    | 61                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 1.13                 | 1.50                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 13                                        | 28.0                                      | 30.0                                                                                                                        | g                       |                                    | 20                                      |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         | 2.00                 | 1.13                        | Fat Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             | And the second s |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   | W. T. |                                         |                      |                             | V-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                           |                                           |                                                                                                                             |                         |                                    |                                         |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEGEND:  | SS AG | SPLIT SI<br>AUGER (<br>PITCHER<br>NX-DOLL | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>NX-DOUIRRIF RARREL SAMPLE | MPLE,<br>APLE<br>SAMPL! | <u>N</u>                           | FIELD                                   |                  | A<br>다<br>교 | Stor                | ndord I<br>lid Limi<br>stic Lin | Standord Penetration Test<br>Liquid Limit<br>Plostic Limit<br>Plosticity Index | est                                                                                                               |                                           |                                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1                                         |                                           |                                                                                                                             |                         | J                                  | *************************************** |                  |             |                     |                                 |                                                                                |                                                                                                                   |                                           | *************************************** |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <b>.</b>                                | SUMD     | IARY OI                       | F LABOF                                                                                                                    | PATOF                           | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO   | JECT                | PROJECT NAME:                            | 1                                                                              | Lift Station<br>Femp, Hunte                                       | Renewo            | 11/Replu                              | acement<br>Moon Li | - Northb                                | orook,           |
|-----------------------------------------|----------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------|------------------|-------|---------------------|------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|---------------------------------------|--------------------|-----------------------------------------|------------------|
|                                         |          | CEOTEST                       | SST EN                                                                                                                     | SINE                            | ENGINEERING, INC.                  |                |                  | PRO   | PROJECT             |                                          | WBS No<br>NUMBER: 1140                                                         | WBS No. R-000267-0111-3; City of Pearland, Texas<br>R: 1140194901 | -01111-           | 3; City                               | of Pearl           | and, Tex                                | s o              |
|                                         |          | SAN                           | SAMPLE                                                                                                                     |                                 |                                    |                |                  | ATT   | ATTERBERG<br>LIMITS | ည္                                       |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                 |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE            | POCKET<br>PENE -<br>TROMETER            |                  |
|                                         |          | De<br>J                       | Depth<br>(ft.)                                                                                                             |                                 |                                    | WATER          | DRY              | İ     |                     |                                          | PASSING<br>NO. 200                                                             | Shear                                                             | Shear             | Conf.                                 | T                  | Shear                                   |                  |
| NO.                                     | No.      | Тар                           | Bottam                                                                                                                     | Туре                            | SP!<br>(blaws/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf) | ┧     | ۲                   | <u>a</u>                                 | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                                 | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf)  | Strength<br>(tsf)                       | TYPE OF MATERIAL |
| HMB-4                                   | 2        | 0.7                           | 2.0                                                                                                                        | 9                               |                                    | 23             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 1.50               | 0.50                                    | Fat Clay         |
|                                         | 3        | 2.0                           | 4.0                                                                                                                        | 9                               |                                    | 19             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 1.13               | 1.25                                    | Fat Clay         |
|                                         | 4        | 4.0                           | 6.0                                                                                                                        | 9                               |                                    | 17             | 114              | 63    | 24                  | 39                                       | 81                                                                             |                                                                   | 1.32              | 0.43                                  | 1.88               | 1.75                                    | Fat Clay         |
| *************************************** | 5        | 6.0                           | 8.0                                                                                                                        | 9                               |                                    | 16             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 1.75               | 1.75                                    | Fat Clay         |
|                                         | 9        | 8.0                           | 10.0                                                                                                                       | 9                               |                                    | 16             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 2.25               | 2.00                                    | Fat Clay         |
|                                         | 7        | 10.0                          | 12.0                                                                                                                       | 9                               |                                    | 18             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 2.25               | 2.13                                    | Fat Clay         |
|                                         | 80       | 12.0                          | 14.0                                                                                                                       | 9                               |                                    | 18             | 114              | 68    | 26                  | 42                                       | 93                                                                             |                                                                   | 1.43              | 1.01                                  | 2.25               | 1.63                                    | Fat Clay         |
|                                         | 6        | 14.0                          | 16.0                                                                                                                       | g                               |                                    | 20             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 2.25               | 2.00                                    | Fat Clay         |
|                                         | 5        | 16.0                          | 18.0                                                                                                                       | 9                               |                                    | 20             | 115              | 45    | 19                  | 26                                       | 91                                                                             |                                                                   | 1.22              | 1.30                                  | 1.00               | 1.13                                    | Lean Clay        |
|                                         | =        | 18.0                          | 20.0                                                                                                                       | 9                               |                                    | 22             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 1.13               | 1.38                                    | Lean Clay        |
|                                         | 12       | 23.5                          | 25.0                                                                                                                       | SS                              | 6                                  | 26             |                  |       |                     |                                          | 91                                                                             |                                                                   |                   |                                       |                    |                                         | Silt             |
|                                         | 5.       | 28.0                          | 30.0                                                                                                                       | 9                               |                                    | 26             |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       | 2.25               | 2.25                                    | Fat Clay         |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
|                                         |          |                               |                                                                                                                            |                                 |                                    |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    |                                         |                  |
| LEGEND:                                 | SS SS XX | SPLIT S<br>AUGER (<br>PITCHER | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>NX-DOURRIF RARREL SAMPLE | MPLE,<br>IPLE<br>SAMPL<br>RFI S | Ω<br>≅                             | FIELD          |                  | SPT P | Sto<br>Liga<br>Plas | ondard<br>uid Lin<br>istic Li<br>sticity | Standard Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index | Test                                                              |                   |                                       |                    |                                         |                  |
|                                         | -        |                               |                                                                                                                            |                                 | ,                                  |                |                  |       |                     |                                          |                                                                                |                                                                   |                   |                                       |                    | *************************************** |                  |

| _             | SUMI   | TARY O                                   | F LABOR                                                                                                                                                            | ATOR                                | SUMMARY OF LABORATORY TEST RESULTS | SULTS                                   |                  | PRO      | PROJECT                                | NAME:           | J                                                                              | Lift Station<br>emp, Hunte                                        | Renew rwood,      | al/Repla<br>Harvest                   | Moon Li           | - Northb                   | orook,           |
|---------------|--------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------|------------------|----------|----------------------------------------|-----------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|---------------------------------------|-------------------|----------------------------|------------------|
|               |        | CEOTE                                    | CEOTEST ENCINEERINC,                                                                                                                                               | INE                                 | SRING, INC.                        |                                         |                  | PRO      | PROJECT                                | WE<br>NUMBER:   | WBS No.<br>3ER: 11403                                                          | WBS No. R-000267-0111-3; City of Pearland, Texas<br>R: 1140194901 | -0111             | -3; City                              | of Pearl          | and, Tex                   | s D              |
|               |        | SAN                                      | SAMPLE                                                                                                                                                             |                                     |                                    |                                         |                  | ATT      | ATTERBERG<br>LIMITS                    | ပ္              |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                 |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE           | POCKET<br>PENE<br>TROMETER |                  |
| CHOO          |        | De<br>(1                                 | Depth<br>(ft.)                                                                                                                                                     |                                     |                                    | WATER                                   | DRY              | 1        |                                        |                 | PASSING<br>NO. 200                                                             | Shear                                                             | "                 | Conf.                                 | 1                 | Sheor                      |                  |
| BOKING<br>NO. | Š      | Тор                                      | Bottom                                                                                                                                                             | Туре                                | SPT<br>(blows/ft.)                 | CONTENT<br>(%)                          | DENSITY<br>(pcf) | <u> </u> | 굽                                      | <u> </u>        | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                                 | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf) | Strength<br>(tsf)          | TYPE OF MATERIAL |
| HMB-5         | 2      | 0.7                                      | 2.0                                                                                                                                                                | an                                  |                                    | 16                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 2.25              | 2.25                       | Fat Clay         |
|               | ъ      | 2.0                                      | 4.0                                                                                                                                                                | 9                                   |                                    | 16                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 2.25              | 2.25                       | Fat Clay         |
|               | 4      | 4.0                                      | 6.0                                                                                                                                                                | 8                                   |                                    | 15                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 2.25              | 2.25                       | Fat Clay         |
|               | 5      | 6.0                                      | 8.0                                                                                                                                                                | 9                                   |                                    | 14                                      | 115              | 53       | 20                                     | 33              | 86                                                                             |                                                                   | 2.88              | 0.58                                  | 2.25              | 2.25                       | Fat Clay         |
|               | 9      | 8.0                                      | 10.0                                                                                                                                                               | 3                                   |                                    | 18                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 2.25              | 2.25                       | Fot Clay         |
|               | 7      | 10.0                                     | 12.0                                                                                                                                                               | an                                  |                                    | 17                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 2.25              | 2.25                       | Fat Clay         |
|               | 80     | 12.0                                     | 14.0                                                                                                                                                               | 9                                   |                                    | 17                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 2.25              | 2.25                       | Fat Clay         |
|               | 6      | 14.0                                     | 16.0                                                                                                                                                               | an                                  |                                    | 22                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 1.25              | 1.25                       | Fat Clay         |
|               | 1      | 16.0                                     | 18.0                                                                                                                                                               | Ωn                                  |                                    | 24                                      | 106              | 36       | 17                                     | 19              | 97                                                                             |                                                                   | 0.47              | 1.30                                  | 0.30              | 0.63                       | Lean Clay        |
|               | =      | 18.5                                     | 20.0                                                                                                                                                               | SS                                  | 25                                 | 20                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            | Sandy Silt       |
|               | 12     | 20.5                                     | 22.0                                                                                                                                                               | SS                                  | 22                                 | 23                                      |                  |          |                                        |                 | 69                                                                             |                                                                   |                   |                                       |                   |                            | Sandy Silt       |
|               | 13     | 22.5                                     | 24.0                                                                                                                                                               | SS                                  | 13                                 | 26                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            | Sandy Silt       |
|               | 14     | 28.0                                     | 30.0                                                                                                                                                               | an                                  |                                    | 24                                      |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       | 0.38              | 1.00                       | Fat Clay         |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
|               |        |                                          |                                                                                                                                                                    |                                     |                                    |                                         |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |
| LEGEND:       | SSS AX | SPLIT SI<br>AUGER (<br>PITCHER<br>Nx-DOU | <ul> <li>UNDISTURBED SAMPLE, EXTRUO</li> <li>SPLIT SPOON SAMPLE</li> <li>AUGER CUTINGS</li> <li>PITCHER BARREL SAMPLE</li> <li>NX-DOUBBLE BARREL SAMPLE</li> </ul> | APLE,  <br>IPLE<br>SAMPLE<br>REL SA | <u>¥</u>                           | FIELD                                   |                  | 유<br>교   | = Star<br>= Liqui<br>= Plas<br>= Plost | adara find Limi | Standord Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index | est                                                               |                   |                                       |                   |                            |                  |
|               | 1      |                                          | 1                                                                                                                                                                  | 111                                 | 7                                  | *************************************** |                  |          |                                        |                 |                                                                                |                                                                   |                   |                                       |                   |                            |                  |

|                                         | SUMN                                                                                           | IARY OF                                   | LABOR                                                                                                                       | ATOR                                | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                                         | PRO   | JECT                | PROJECT NAME:                              | E: FY2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lift Station                                                                                                           | Renewo                                  | /Repl                                 | acement             | - Northbrook,                | rook,            |
|-----------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------|-----------------------------------------|-------|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------|------------------------------|------------------|
|                                         |                                                                                                | GEOTEST                                   | ST ENC                                                                                                                      | INEE                                | ENCINEERING, INC.                  |                |                                         | PRO   | PROJECT             | 1                                          | WBS No<br>BER: 1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ndray lemp, Hunterwood, Harvest Moon Litt Stations WBS No. R-000267-0111-3; City of Pearland, Texas NUMBER: 1140194901 | erwood,<br>7-0111-                      | ndrves:<br>3; City                    | Moon Li<br>of Pearl | tt Statior<br>and, Tex       | sc<br>sp         |
|                                         |                                                                                                | SAN                                       | SAMPLE                                                                                                                      |                                     |                                    |                |                                         | ATT   | ATTERBERG<br>LIMITS | ၁ွ                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                                                                                      |                                         | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE             | POCKET<br>PENE –<br>TROMETER |                  |
| G                                       |                                                                                                | De<br>(t                                  | Depth<br>(ft.)                                                                                                              |                                     |                                    | WATER          | DRY                                     | L     |                     |                                            | PASSING<br>NO. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shear                                                                                                                  | 0                                       | Conf.                                 | 1                   | Shear                        |                  |
| NO.                                     | No.                                                                                            | Тор                                       | Bottom                                                                                                                      | Туре                                | SPT<br>(blows/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf)                        |       | <u>ل</u>            | <u> </u>                                   | Sieve<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strength<br>(tsf)                                                                                                      | Strength<br>(tsf)                       | Press.<br>(tsf)                       | Strength<br>(tsf)   | Strength<br>(tsf)            | TYPE OF MATERIAL |
| HMB-6                                   | 2                                                                                              | 0.6                                       | 2.0                                                                                                                         | an                                  |                                    | 20             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              | Ē                |
|                                         | 3                                                                                              | 2.0                                       | 4.0                                                                                                                         | B                                   |                                    | 18             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       | 1.38                | 1.13                         | FI               |
|                                         | 4                                                                                              | 4.0                                       | 6.0                                                                                                                         | 9                                   |                                    | 25             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       | 0.55                | 0.25                         |                  |
|                                         | S                                                                                              | 6.0                                       | 8.0                                                                                                                         | 9                                   |                                    | 19             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       | 2.00                | 2.25                         | in the second    |
| *************************************** | 9                                                                                              | 8.0                                       | 10.0                                                                                                                        | 9                                   |                                    | 22             | 106                                     | 67    | 25                  | 42                                         | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | 0.79                                    | 0.72                                  | 2.00                | 1.63                         | Fat Clay         |
|                                         | 7                                                                                              | 10.0                                      | 12.0                                                                                                                        | 9                                   |                                    | 23             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       | 1.38                | 1.63                         | Fat Clay         |
|                                         | 80                                                                                             | 12.0                                      | 14.0                                                                                                                        | 9                                   |                                    | 21             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       | 0.63                | 1.38                         | Fat Clay         |
|                                         | 6                                                                                              | 14.0                                      | 16.0                                                                                                                        | g                                   |                                    | 28             | 96                                      | 58    | 23                  | 35                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | 0.75                                    | 1.15                                  | 2.25                | 1.50                         | Fat Clay         |
|                                         | 10                                                                                             | 16.0                                      | 18.0                                                                                                                        | an                                  |                                    | 30             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              | Clayey Sand      |
|                                         | -                                                                                              | 18.0                                      | 20.0                                                                                                                        | an                                  |                                    | 19             | 117                                     | 29    | 19                  | 10                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | 0.87                                    | 1.44                                  | 1.50                | 2.25                         | Lean Clay        |
|                                         | 12                                                                                             | 23.5                                      | 25.0                                                                                                                        | SS                                  | 31                                 | 23             |                                         |       |                     |                                            | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                         |                                       |                     |                              | Silty Sand       |
|                                         | 13                                                                                             | 28.5                                      | 30.0                                                                                                                        | SS                                  | 17                                 | 16             |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              | Silty Sand       |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            | The state of the s |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                | -                                       |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
|                                         |                                                                                                |                                           |                                                                                                                             |                                     |                                    |                |                                         |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |                                       |                     |                              |                  |
| LEGEND:                                 | SS S<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | SPLIT SI<br>AUGER (<br>PITCHER<br>Nx-DOUJ | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>A AUGER CUTINGS<br>PITCHER BARREL SAMPLE<br>NX—DOUBBLE BARREL SAMPLE | APLE, I<br>IPLE<br>SAMPLE<br>REL SA | ED                                 | FIELD          |                                         | SPT I | Storing Play        | indord<br>Jid Lim<br>stic Lir<br>sticity I | Standord Penetration Test<br>Liquid Limit<br>Plostic Limit<br>Plosticity Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test                                                                                                                   |                                         |                                       |                     |                              |                  |
|                                         | 1                                                                                              |                                           |                                                                                                                             |                                     |                                    |                | *************************************** |       |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        | *************************************** |                                       |                     |                              |                  |

| •                                       | SUMN                                          | AARY O                                                     | F LABOR                                                                                                                       | PATOR                              | SUMMARY OF LABORATORY TEST RESULTS | SULTS                                   |                  | PRO             | PROJECT                              | NAME                            | : FY2012<br>Hardy T                                                            | Lift Station                                     | Renewa            | /Replc                                  | ncement                                 | Northb                      | rook,            |
|-----------------------------------------|-----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------|------------------|-----------------|--------------------------------------|---------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------------|------------------|
|                                         |                                               | CEOTEST                                                    | ST EN                                                                                                                         | SINEE                              | ENGINEERING, INC.                  |                                         |                  | PRO             | PROJECT                              | NUMB                            | WBS No.                                                                        | WBS No. R-000267-0111-3; City of Pearland, Texas | -0111-            | 3; City                                 | of Pearl                                | and, Tex                    | SD               |
|                                         |                                               | SA                                                         | SAMPLE                                                                                                                        |                                    |                                    |                                         |                  | ATT             | ATTERBERG<br>LIMITS                  | ည္                              |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U)   | TORVANE                                 | POCKET<br>PENE-<br>TROMETER |                  |
| C S C S C S C S C S C S C S C S C S C S |                                               | De<br>(1                                                   | Depth<br>(ft.)                                                                                                                |                                    |                                    | WATER                                   |                  | l               |                                      | Τ                               | PASSING<br>NO. 200                                                             | 1                                                | Shear             | Canf.                                   | 1                                       | Shear                       |                  |
| NO.                                     | Š.                                            | Тор                                                        | Bottam                                                                                                                        | Туре                               | (blaws/ft.)                        | CONTENT<br>(%)                          | DENSITY<br>(pcf) | Ⅎ               | 료                                    | ā.                              | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                | Strength<br>(tsf) | Press.<br>(tsf)                         | Strength<br>(tsf)                       | Strength<br>(tsf)           | TYPE OF MATERIAL |
| HWB-7 (HWB-7P)                          | 2                                             | 9.0                                                        | 2.0                                                                                                                           | gn                                 |                                    | 13                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         | 1.38                                    | 1.88                        | Sandy Lean Clay  |
|                                         | 3                                             | 2.0                                                        | 4.0                                                                                                                           | an                                 |                                    | 15                                      |                  |                 |                                      |                                 |                                                                                |                                                  | -                 |                                         | 1.63                                    | 1.63                        | Sandy Lean Clay  |
|                                         | 4                                             | 4.0                                                        | 6.0                                                                                                                           | g,                                 |                                    | 14                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         | 1.75                                    | 2.25                        | Sandy Lean Clay  |
| *************************************** | 2                                             | 6.0                                                        | 8.0                                                                                                                           | an                                 |                                    | 11                                      | 118              | 32              | 15                                   | 17                              | 70                                                                             |                                                  | 2.63              | 0.58                                    | 1.50                                    | 2.25                        | Sandy Lean Clay  |
|                                         | 9                                             | 8.0                                                        | 10.0                                                                                                                          | an                                 |                                    | 13                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         | 0.88                                    | 1.50                        | Sandy Lean Clay  |
|                                         | 7                                             | 10.0                                                       | 12.0                                                                                                                          | 9                                  |                                    | 13                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         | 0:20                                    | 0.75                        | Sandy Lean Clay  |
|                                         | ω                                             | 12.5                                                       | 14.0                                                                                                                          | SS                                 | 23                                 | 17                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             | Silty Sand       |
|                                         | 6                                             | 14.5                                                       | 16.0                                                                                                                          | SS                                 | 27                                 | 20                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             | Silty Sand       |
|                                         | 5                                             | 16.5                                                       | 18.0                                                                                                                          | SS                                 | 41                                 | 20                                      |                  |                 |                                      |                                 | 29                                                                             |                                                  |                   |                                         |                                         |                             | Silty Sand       |
|                                         | =                                             | 18.5                                                       | 20.0                                                                                                                          | SS                                 | 90/11.0"                           | 19                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             | Silty Sand       |
|                                         | 12                                            | 23.5                                                       | 25.0                                                                                                                          | SS                                 | 16                                 | 24                                      |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             | Sandy Silt       |
|                                         | 13                                            | 28.5                                                       | 30.0                                                                                                                          | SS                                 | 22                                 | 24                                      |                  | 61              | 24                                   | 37                              | 100                                                                            |                                                  |                   |                                         |                                         |                             | Fat Clay         |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
|                                         |                                               |                                                            |                                                                                                                               |                                    |                                    |                                         |                  |                 |                                      |                                 |                                                                                |                                                  |                   |                                         |                                         |                             |                  |
| LEGEND:                                 | SSS X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | = UNDIST(<br>= SPLIT SI<br>= AUGER (<br>= PITCHER = Nx-DOU | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>A AUGER CUTINGS<br>PITCHER BARREL SAMPLE<br>= NX—DOUBBLE BARREL SAMPLE | MPLE,<br>APLE<br>SAMPLI<br>SREL SV | EXTRUDED IN FIELD E AMPLE          | FIELD                                   |                  | SPT<br>LL<br>PL | = Star<br>= Liqu<br>= Plas<br>= Plas | ndard F<br>Jid Limi<br>stic Lin | Standard Penetration Test<br>Liquid Limit<br>Plostic Limit<br>Plosticity Index | est                                              |                   |                                         |                                         |                             |                  |
|                                         | 1                                             |                                                            |                                                                                                                               |                                    |                                    | *************************************** |                  |                 |                                      |                                 |                                                                                | -                                                |                   | *************************************** | *************************************** |                             |                  |

|         | SUMR                  | IARY OI                                   | F LABOF                                                                                                                        | tator                               | SUMMARY OF LABORATORY TEST RESULTS | SULTS          |                  | PRO         | JECT                                   | PROJECT NAME:   | : FY2012                                                                       | Lift Station                                     | Renew             | J/Repl                                | acement             | Northb                       | orook,           |
|---------|-----------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------|------------------|-------------|----------------------------------------|-----------------|--------------------------------------------------------------------------------|--------------------------------------------------|-------------------|---------------------------------------|---------------------|------------------------------|------------------|
|         |                       | CEOTEST                                   |                                                                                                                                | TINEE                               | ENGINEERING, INC.                  |                |                  | PRO         | PROJECT                                | NUME            | WBS No<br>3ER: 1140                                                            | WBS No. R-000267-0111-3; City of Pearland, Texas | 7-0111-           | narves<br>-3; City                    | Moon Li<br>of Pearl | rr Statior<br>and, Tex       | sp.              |
|         |                       | SAN                                       | SAMPLE                                                                                                                         |                                     |                                    |                |                  | ATT         | ATTERBERG<br>LIMITS                    | ပ္ခ             |                                                                                | UNCONFINED<br>COMPRESSION<br>TEST                |                   | TRIAXIAL<br>COMPRESSION<br>TEST (U-U) | TORVANE             | POCKET<br>PENE –<br>TROMFTER |                  |
| Si di   |                       | De<br>(†                                  | Depth<br>(ft.)                                                                                                                 |                                     |                                    | WATER          | DRY              |             |                                        |                 | PASSING<br>NO. 200                                                             | Shear                                            | "                 | Conf.                                 | 1                   | Shear                        |                  |
| NO.     | Š.                    | Тор                                       | Bottom                                                                                                                         | Туре                                | SPT<br>(blows/ft.)                 | CONTENT<br>(%) | DENSITY<br>(pcf) | <u> </u>    | 굽                                      | <u>ā.</u>       | SIEVE<br>(%)                                                                   | Strength<br>(tsf)                                | Strength<br>(tsf) | Press.<br>(tsf)                       | Strength<br>(tsf)   | Strength<br>(tsf)            | TYPE OF MATERIAL |
| HMB-8   | 2                     | 0.6                                       | 2.0                                                                                                                            | an                                  |                                    | 20             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              | Lean Clay        |
|         | 6                     | 2.0                                       | 4.0                                                                                                                            | an                                  |                                    | 16             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       | 1.25                | 1.00                         | Lean Clay        |
|         | 4                     | 4.0                                       | 6.0                                                                                                                            | 9                                   |                                    | 17             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       | 1.63                | 1.38                         | Lean Clay        |
|         | 5                     | 6.0                                       | 8.0                                                                                                                            | 9                                   |                                    | 16             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       | 2.00                | 2.00                         | Leon Clay        |
|         | 9                     | 8.0                                       | 10.0                                                                                                                           | 9                                   |                                    | 18             | 114              | 32          | 15                                     | 17              | 77                                                                             |                                                  | 0.93              | 0.72                                  | 1.25                | 0.88                         | Leon Clay        |
|         | 7                     | 10.0                                      | 12.0                                                                                                                           | an                                  |                                    | 17             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       | 1.25                | 0.75                         | Lean Clay        |
|         | 8                     | 12.0                                      | 14.0                                                                                                                           | αn                                  |                                    | 14             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       | 1.25                | 0.25                         | Lean Clay        |
|         | 6                     | 14.0                                      | 16.0                                                                                                                           | g,                                  |                                    | 22             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       | 0.50                | 0.50                         | Lean Clay        |
|         | 01                    | 16.0                                      | 18.0                                                                                                                           | 9                                   |                                    | 19             |                  | 26          | 17                                     | 6               | 92                                                                             |                                                  |                   |                                       | 1.50                | 1.75                         | Lean Clay        |
|         | Ξ                     | 18.5                                      | 20.0                                                                                                                           | SS                                  | 12                                 | 18             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              | Sondy Silt       |
|         | 12                    | 23.5                                      | 25.0                                                                                                                           | SS                                  | 12                                 | 25             |                  |             |                                        |                 | 53                                                                             |                                                  |                   |                                       |                     |                              | Sandy Silt       |
|         | 13                    | 28.5                                      | 30.0                                                                                                                           | SS                                  | 30                                 | 22             |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              | Lean Clay        |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
|         |                       |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |
| LEGEND: | SSS X<br>X<br>B A S X | SPLIT SI<br>AUGER (<br>PITCHER<br>Nx-DOUI | = UNDISTURBED SAMPLE, EXTRUDI<br>SPLIT SPOON SAMPLE<br>A AUGER CUTTINGS<br>PITCHER BARREL SAMPLE<br>• NX-DOUBBIE BARREL SAMPLE | APLE,  <br>IPLE<br>SAMPLE<br>RFI SA | O<br>N                             | FIELD          |                  | A<br>무<br>교 | = Stor<br>= Liqui<br>= Plas<br>= Plast | ndord Fide Limi | Stondord Penetration Test<br>Liquid Limit<br>Plastic Limit<br>Plasticity Index | Fest                                             |                   |                                       |                     |                              |                  |
|         | 1                     |                                           |                                                                                                                                |                                     |                                    |                |                  |             |                                        |                 |                                                                                |                                                  |                   |                                       |                     |                              |                  |





FIGURE B-14



FIGURE B-15



FIGURE B-16

# APPENDIX C

Piezometer Abandonment Reports

STATE OF TEXAS PLUGGING REPORT for Tracking #89207

Owner:

Geotest Engineering, Inc

Owner Well #:

Address:

5600 Bintliff Rd.

Grid #:

**HMB-1** 65-12-7

Well Location:

**Harvest Moon** 

Houston, TX 77056

Houston, TX 77036

Latitude:

29° 45' 36" N

Well County:

Longitude:

095° 36' 00" W

GPS Brand Used:

Lowrance XOG

Well Type:

**Monitor** 

2836

Harris

#### HISTORICAL DATA ON WELL TO BE PLUGGED

Original Well

Dempsey Gearen Jr.

Driller:

Driller's License

Number of

Original Well

Driller:

Date Well Drilled: 6/24/2013

Well Report

333925

Tracking Number:

Diameter of Borehole:

5" inches

Total Depth of

Borehole:

70' feet

Date Well

8/12/2013

Plugged:

Person Actually

Dempsey Gearen Jr.

Performing Plugging Operation:

License Number

2836

of Plugging Operator:

Plugging Method:

Tremmie pipe cement from bottom to top.

Plugging Variance #: No Data

1st Interval: 2 inches diameter, From 60 ft to 70 ft

2nd Interval: No Data 3rd Interval: No Data

Casing Left Data:

Cement/Bentonite 1st Interval: From 0 ft to 70 ft; Sack(s)/type of cement used: 3 Portland

Plugs Placed in

2nd Interval: No Data

8/13/13

Well:

3rd Interval: No Data 4th Interval: No Data 5th Interval: No Data

Certification Data: The plug installer certified that the plug installer plugged this well (or the well was plugged under

the plug installer's direct supervision) and that each and all of the statements herein are true and correct. The plug installer understood that failure to complete the required items will result in the

log(s) being returned for completion and resubmittal.

Company Information:

Dempsey Gearen Jr. 32126 Rochen Rd. Waller, TX 77484

Plug installer

2836

License Number:

Dempsey Gearen Jr.

Licensed Plug Installer Signature:

beilipsey Gealelisi

Registered Plug

No Data

Installer Apprentice Signature:

Apprentice No.

No Data

Registration Number:

Plugging Method

No Data

Comments:

Please include the plugging report's tracking number (Tracking #89207) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880 STATE OF TEXAS PLUGGING REPORT for Tracking #88931

Owner:

**COH Harvest Moon** 

Owner Well #:

HMB-7P

Address:

Dairy Ashford

Houston, TX 77077

66-12-7

Well

1200 Dairy Ashford

Latitude:

Grid #:

29° 45' 13" N

Location:

Well County:

Houston, TX 77077

Longitude:

096° 36' 08" W

GPS Brand Used:

Magellan

Well Type:

Monitor

Harris

HISTORICAL DATA ON WELL TO BE PLUGGED

Original Well

Mario Gonzalez

Driller:

Driller's License

Number of Original Well

Driller:

No Data

Date Well Drilled:

5/30/2013

Well Report

Tracking Number:

Diameter of

5" inches

327990

Borehole:

Total Depth of

Borehole:

30 feet

Date Well

7/13/2013

Plugged:

Person Actually

Mario Gonzalez

Performing Plugging Operation:

License Number

58171

of Plugging Operator:

Plugging Method:

Tremmie pipe cement from bottom to top.

Plugging Variance

No Data

#:

Casing Left Data:

1st Interval: No Data

2nd Interval: No Data 3rd Interval: No Data

8/27/13

Plugs Placed in

Well:

Cement/Bentonite 1st Interval: From 0 ft to 3 ft; Sack(s)/type of cement used: Grout 2nd Interval: From 3 ft to 7 ft; Sack(s)/type of cement used: Bentonite 3rd Interval: From 7 ft to 20 ft; Sack(s)/type of cement used: Sand

> 4th Interval: No Data 5th Interval: No Data

Certification Data: The plug installer certified that the plug installer plugged this well (or the well was plugged under the plug installer's direct supervision) and that each and all of the statements herein are true and correct. The plug installer understood that failure to complete the required items will result in the log(s) being returned for completion and

Amended 8/23/13 at request of driller (Plugging date from 6/30 to 7/13).

resubmittal.

Company Information: **Envirotech Drilling Services** 2718 South Brompton Drive

Pearland, TX 77584

Plug Installer License Number:

58171

Licensed Plug

Jaime Vasquez

Installer Signature:

Registered Plug

Mario Gonzalez

Installer **Apprentice** Signature:

Apprentice

No Data

Registration Number:

Plugging Method

Unable to use system amendment process. 8/23/13 - DT Comments:

Please include the plugging report's tracking number (Tracking #88931) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880